A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conductive Metal-Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain. | LitMetric

Herein, we demonstrated a strategy to regulate the conductive metal-organic framework (MOF) surface, by the conjugated molecule wires for selective and sensitive determination of dopamine (DA) in the live brain. The MOFs were decorated at the carbon fiber electrode deposited by Au nanoleaves as the upper electric transducer to provide rich electrocatalytic sites for electron transfer of neurochemicals at the electrode surface, leading to greatly enhanced sensitivity for detection of neurochemicals. On the other hand, the conjugated molecular wire, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1), was synthesized and assembled as an underlying bridge to regulate the electrochemical processes at the MOF-based electrode, specifically decreasing the reaction Gibbs free energy of DA oxidation, thus selectively promoting the heterogeneous electron transfer of DA from the MOF layer to the electrode surface. Owing to the electrocatalytic activity for DA oxidation, the present microsensor exhibited high selectivity for real-time tracking of DA in a good linear relationship in the range of 0.004-0.4 μM with a detection limit of 1 nM. Eventually, this functionalized electrode was successfully applied for in vivo monitoring of DA in mouse brains with Parkinson's disease (PD) model. The results indicated that the levels of DA were obviously decreased in both acute and subacute PD models. Moreover, the level of DA strongly depended on the amount of uric acid (UA), a physiological antioxidant, which rose as the UA amount was lower than 200 mg kg but was downregulated again after treatment by a higher amount of UA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c07053DOI Listing

Publication Analysis

Top Keywords

conductive metal-organic
8
metal-organic framework
8
conjugated molecular
8
electron transfer
8
electrode surface
8
electrode
5
framework microelectrodes
4
microelectrodes regulated
4
regulated conjugated
4
molecular wires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!