Background: Less invasive monitoring, such as radial arterial pulse contour analysis (ProAQT® sensor), represents an alternative when hemodynamic monitoring is necessary to guide postoperative management and invasive monitoring is not technically feasible. The aim of the study is to evaluate the accuracy of the ProAQT® sensor cardiac output measurements in comparison with Pulmonary Artery Catheter (PAC) during the postoperative course of patients who underwent cardiac surgery with cardiopulmonary bypass.

Case Presentation: Prospective observational study in a Surgical Intensive Care Unit of a tertiary university hospital. Ten patients with a mean age of 73.5 years were included. The main comorbidities were hypertension, diabetes, dyslipidemia and the preoperative left ejection fraction was 43.8 ± 14.5%. Regarding the type of surgery, six patients underwent valve surgery, two underwent coronary artery bypass grafting and two underwent aortic surgery. The cardiac index measured simultaneously by the ProAQT® sensor was compared with the PAC. The parameters were evaluated at predefined time points during the early postoperative courses (6 h, 12 h, 24 h, 48 h and 72 h). The degree of agreement with the cardiac index between the PAC and the ProAQT® sensor along the time points was measured using the concordance correlation coefficient, Bland-Altman analysis, and four-quadrant plot. Sixty-three pairs of measurements were analyzed. We showed that measurements of cardiac index were slightly higher with PAC (β ̂ = - 0.146, p-value = 0.094). The concordance correlation coefficient for the additive model of cardiac index was 0.64 (95% Confidence Interval: 0.36, 0.82), indicating a high concordance between both sensors. Bland-Altmann analysis showed a mean bias of 0.45 L·min·m, limits of agreement from - 1.65 to 2.3 L·min·m, and percentage of error was 82.5%. Four-quadrant plot of changes in cardiac index showed a good concordance rate (75%), which increases after applying the exclusion zone (87%).

Conclusions: In patients undergoing cardiac surgery, the ProAQT® sensor may be useful to monitor cardiac index during the postoperative period, especially when more invasive monitoring is not possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843904PMC
http://dx.doi.org/10.1186/s13019-023-02128-1DOI Listing

Publication Analysis

Top Keywords

proaqt® sensor
20
cardiac surgery
12
invasive monitoring
12
cardiac
11
radial arterial
8
cardiac output
8
patients underwent
8
time points
8
concordance correlation
8
correlation coefficient
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

This study aims to evaluate the efficiency and energy release characteristics of different types of coal in pulse detonation engines (PDE) to advance the development of deep coal fluidization detonation technology, achieving more efficient and cleaner coal utilization. Using a custom PDE setup, experiments were conducted with four coal types at mass flow rates from 30 to 120 g/s. High-frequency pressure sensors assessed pressure dynamics and detonation wave propagation, complemented by numerical simulations for accuracy.

View Article and Find Full Text PDF

On-site biosignal amplification using a single high-spin conjugated polymer.

Nat Commun

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.

On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification.

View Article and Find Full Text PDF

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!