Introduction: New glucose-monitoring technologies have different cost-benefit profiles compared with traditional finger-prick tests, resulting in a preference-sensitive situation for patients. This study aimed to assess the relative value adults with diabetes assign to device attributes in two countries.
Research Design And Methods: Adults with type 1 or 2 diabetes from the Netherlands (n=226) and Poland (n=261) completed an online discrete choice experiment. Respondents choose between hypothetical glucose monitors described using seven attributes: precision, effort to check, number of finger pricks required, risk of skin irritation, information provided, alarm function and out-of-pocket costs. Panel mixed logit models were used to determine attribute relative importance and to calculate expected uptake rates and willingness to pay (WTP).
Results: The most important attribute for both countries was monthly out-of-pocket costs. Polish respondents were more likely than Dutch respondents to choose a glucose-monitoring device over a standard finger prick and had higher WTP for a device. Dutch respondents had higher WTP for device improvements in an effort to check and reduce the number of finger pricks a device requires.
Conclusion: Costs are the primary concern of patients in both countries when choosing a glucose monitor and would likely hamper real-world uptake. The costs-benefit profiles of such devices should be critically reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853131 | PMC |
http://dx.doi.org/10.1136/bmjdrc-2022-003025 | DOI Listing |
Biosens Bioelectron
January 2025
School of Clinical Medicine, Discipline of Women's Health, Faculty of Medicine, University of New South Wales, Royal Hospital for Women, Sydney, Australia; Department of Maternal-Fetal Medicine, Royal Hospital for Women, Sydney, Australia. Electronic address:
Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors.
View Article and Find Full Text PDFDiabetes Technol Ther
January 2025
Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
The accuracy of the latest generation Dexcom G7 sensors in individuals with diabetes undergoing hemodialysis has not previously been investigated. Participants with diabetes undergoing hemodialysis were recruited, with paired sensor glucose from Dexcom G7 recorded with plasma glucose analyzed in the laboratory, as well as the Freestyle Precision Pro glucometer and EKF Biosen C-Line analyzer. Ten adults (median age 64.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China. Electronic address:
Wearable sensors can easily enable real-time and noninvasive glucose (Glu) monitoring, providing vital information for effectively preventing various complications caused by high glucose level. Here, a wearable sensor based on nanozyme-catalyzed cascade reactions is designed for Glu monitoring in sweat. Au nanoparticles (AuNPs) are anchored to the carbonated zeolitic imidazolate framework-8 (ZIF-8-C), endowing the sensor with Glu oxidase (GOx)-like and peroxidase (POD)-like activity.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
Background: Effective glycaemic control following cardiac surgery improves clinical outcomes, and continuous glucose monitoring (CGM) might be a valuable tool in achieving this objective. We investigated the effect of real-time CGM and telemonitoring on postoperative glycaemic control in people with type 2 diabetes (T2D) after coronary artery bypass grafting (CABG).
Methods: In this randomized clinical trial (RCT), adults with T2D undergoing CABG were assigned to either a test group utilizing real-time CGM (Dexcom G6) and telemetry for glycaemic control, or a control group with blinded CGM measures, relying on point-of-care measures.
Sci Rep
January 2025
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
Continuous glucose monitors (CGM) provide valuable insights about glycemic control that aid in diabetes management. However, interpreting metrics and charts and synthesizing them into linguistic summaries is often non-trivial for patients and providers. The advent of large language models (LLMs) has enabled real-time text generation and summarization of medical data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!