Machine Learning and Health Care: Potential Benefits and Issues.

J Ambul Care Manage

District of Columbia (Dr J. G. Atkinson); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (Dr E. G. Atkinson).

Published: February 2023

We discuss the potential for machine learning (ML) and artificial intelligence (AI) to improve health care, while detailing caveats and important considerations to ensure unbiased and equitable implementation. If disparities exist in the data used to train ML algorithms, they must be recognized and accounted for, so they do not bias performance accuracy or are not interpreted by the algorithm as simply a lack of need. We pay particular attention to an area in which bias in data composition is particularly striking, that is in large-scale genetics databases, as people of European descent are vastly overrepresented in the existing resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974552PMC
http://dx.doi.org/10.1097/JAC.0000000000000453DOI Listing

Publication Analysis

Top Keywords

machine learning
8
health care
8
learning health
4
care potential
4
potential benefits
4
benefits issues
4
issues discuss
4
discuss potential
4
potential machine
4
learning artificial
4

Similar Publications

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!