Improving Orthologous Signal and Model Fit in Datasets Addressing the Root of the Animal Phylogeny.

Mol Biol Evol

Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Published: January 2023

There is conflicting evidence as to whether Porifera (sponges) or Ctenophora (comb jellies) comprise the root of the animal phylogeny. Support for either a Porifera-sister or Ctenophore-sister tree has been extensively examined in the context of model selection, taxon sampling, and outgroup selection. The influence of dataset construction is comparatively understudied. We re-examine five animal phylogeny datasets that have supported either root hypothesis using an approach designed to enrich orthologous signal in phylogenomic datasets. We find that many component orthogroups in animal datasets fail to recover major lineages as monophyletic with the exception of Ctenophora, regardless of the supported root. Enriching these datasets to retain orthogroups recovering ≥3 major lineages reduces dataset size by up to 50% while retaining underlying phylogenetic information and taxon sampling. Site-heterogeneous phylogenomic analysis of these enriched datasets recovers both Porifera-sister and Ctenophora-sister positions, even with additional constraints on outgroup sampling. Two datasets which previously supported Ctenophora-sister support Porifera-sister upon enrichment. All enriched datasets display improved model fitness under posterior predictive analysis. While not conclusively rooting animals at either Porifera or Ctenophora, we do see an increase in signal for Porifera-sister and a decrease in signal for Ctenophore-sister when data are filtered for orthologous signal. Our results indicate that dataset size and construction as well as model fit influence animal root inference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848061PMC
http://dx.doi.org/10.1093/molbev/msac276DOI Listing

Publication Analysis

Top Keywords

orthologous signal
12
animal phylogeny
12
model fit
8
datasets
8
root animal
8
support porifera-sister
8
taxon sampling
8
datasets supported
8
supported root
8
major lineages
8

Similar Publications

Gene model for the ortholog of glycogen synthase ( ) in the May 2017 (Princeton ASM75419v2/DsimGB2) Genome Assembly (GenBank Accession: GCA_000754195.3 ). This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.

View Article and Find Full Text PDF

Glial-derived TNF/Eiger signaling promotes somatosensory neurite sculpting.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.

The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.

View Article and Find Full Text PDF

Populations of proliferating cells such as stem cells and tumors are often nutrient responsive. Highly conserved signaling pathways communicate information about the surrounding environmental, organismal, and cellular nutrient conditions. One such pathway is the Target of Rapamycin (TOR) pathway.

View Article and Find Full Text PDF

Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).

View Article and Find Full Text PDF

Profiling Tel1 Signaling Reveals a Non-Canonical Motif Targeting DNA Repair and Telomere Control Machineries.

J Biol Chem

January 2025

Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. Electronic address:

The stability of the genome relies on Phosphatidyl Inositol 3-Kinase-related Kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In S. cerevisiae, the Tel1 kinase (ortholog of human ATM) is activated at DNA double strand breaks (DSBs) and short telomeres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!