Oral squamous cell carcinoma (OSCC) is one of the most common oral malignancies. Radiotherapy is the primary noninvasive treatment of OSCC for avoiding surgery-induced facial deformities and impaired oral function. However, the specificity of OSCC limits radiotherapeutic effects because of the hypoxia-induced low radiosensitivity of tumors and the low radiation tolerance of surrounding normal tissues. Here, we design a highly efficient and low-toxic radiosensitization strategy. On the one hand, biocompatible poly(vinyl pyrrolidone)-modified tantalum nanoparticles (Ta@PVP NPs) not only have strong X-ray deposition capability to upregulate oxidative stress but also have photothermal conversion efficiency to improve hypoxia for tumor radiosensitivity. On the other hand, to optimize the spatial distribution of Ta@PVP NPs within tumors, mussel-inspired catechol with bioadhesive properties is grafted on tumor microenvironment-responsive sodium alginate (DAA) to form hydrogels for precision radiotherapy. On this basis, we find that Ta@PVP-DAA hydrogels effectively inhibit OSCC development in mice under photothermal-assisted radiotherapy without facial deformities and damage to surrounding normal tissues. Overall, our work not only promotes the exploration of Ta@PVP NPs as new radiosensitizers for OSCC but also develops a nanocomposite hydrogel system strategy as a promising paradigm for the precision treatment of orthotopic tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c20467 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Surgical resection and high-dose radiotherapy constitute the standard therapeutic approaches for chordoma. However, the efficacy of radiotherapy is often compromised by the tumor microenvironment's hypoxic conditions, which confer radiation resistance, and by the potential damage to adjacent spinal cord and neural structures from elevated radiation doses. To address these challenges, we employed high biocompatible poly(vinylpyrrolidone)-modified tantalum nanoparticles (Ta@PVP NPs) as a potent radiosensitizer to augment the radiotherapy sensitivity of chordoma.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China.
Oral squamous cell carcinoma (OSCC) is one of the most common oral malignancies. Radiotherapy is the primary noninvasive treatment of OSCC for avoiding surgery-induced facial deformities and impaired oral function. However, the specificity of OSCC limits radiotherapeutic effects because of the hypoxia-induced low radiosensitivity of tumors and the low radiation tolerance of surrounding normal tissues.
View Article and Find Full Text PDFACS Nano
June 2022
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China.
Metastasis of breast carcinoma is commonly realized through lymphatic circulation, which seriously threatens the lives of breast cancer patients. Therefore, efficient therapy for both primary tumor and metastatic sentinel lymph nodes (SLNs) is highly desired to inhibit cancer growth and metastasis. During breast cancer treatment, radiotherapy (RT) is a common clinical method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!