A direct nucleophilic monofluoroalkylation strategy leveraging on lithium fluorocarbenoids has been developed. Flow microreactor technology allows capitalization of the synthetic potential of these scarcely explored short-lived intermediates - namely 1-fluoro-2-phenylethyllithium, 1-fluoro-3-phenylpropyllithium, and 1-fluorononyllithium - generated through lithium/iodine exchange reaction. This robust protocol was employed to prepare new fluorinated products, adopting various classes of electrophiles. The inherent advantages of microreactor technology contribute to rendering this approach a new valuable tool for direct fluoroalkylation chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc06717j | DOI Listing |
Org Lett
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
We disclose herein a chiral phosphoric-acid-catalyzed enantioselective addition reaction of alcohols to fluoroalkylated biaryl 1,3-oxoazepines, which furnished a wide range of bridged biaryls bearing a fluoroalkylated quaternary carbon stereocenter on the seven-membered ring in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee). Our method can be used for the modification of several natural products and bioactive molecules. Preliminary studies revealed that the products obtained in this reaction exhibit good in vitro bioactivities against two plant pathogens.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiamen University, Chemistry, 422 South Siming Road, 361005, Xiamen, CHINA.
Despite the increasing interest in radical-based fluoroalkylation techniques, the organofluorine compounds bearing the partially fluorinated hexafluoroisopropyl group remain extremely scarce due to the lack of appropriate reagents. Herein we report an unprecedented photoelectrocatalytic method for the C-H hexafluoroisopropylation of indoles and tryptophan peptides, utilizing the readily available hexafluoro-2-propanol (HFIP) as the fluoroalkylation reagent. In this process, HFIP is converted into hexafluoroisopropyl radicals, enabling fluoroalkylation reactions.
View Article and Find Full Text PDFChempluschem
January 2025
Kaiserslautern University of Technology: Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau, Chemistry, 67663, Kaiserslautern, GERMANY.
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Borch Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
Fluoroalkyl arenes (Ar-R) are valuable substructures present in several FDA-approved drugs, patents, agrochemicals, and materials, and complementary strategies that enable access to a broad spectrum of Ar-R compounds benefit these applied fields. Herein, we report a deoxyfluoroalkylation-aromatization strategy to convert cyclohexanones into broad-spectrum Ar-R containing compounds. Generally, the fluoroalkyl sources were activated to participate in a 1,2-addition reaction followed by aromatization in a sequence that contrasts more common preparations of these Ar-R compounds, such as (i) transition-metal catalyzed cross-coupling reactions of aryl electrophiles and nucleophiles, and (ii) radical fluoroalkylation reactions of C-H bonds of arenes.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!