Background: Knowledge about the occurrence of processes such as proliferation, apoptosis and angiogenesis in healthy lung tissues with different bronchial epitheliums is limited, and further exploration can contribute to a better understanding of the physiological renewal of lung tissues. The processes mentioned above occur with the help of important tissue factors; therefore, the aim of the study was to determine the expression of markers Ki-67, nestin, CD34 and vascular endothelial growth factor (VEFG) and detect apoptotic cells in relatively healthy lung tissue.

Methods: Samples of relatively healthy lung tissue were obtained from 19 patients and divided into groups of patients with non-changed and patients with metaplastic bronchial epithelium. Tissue samples were examined by hematoxylin and eosin staining. Ki-67, nestin, VEGF and CD34-positive cells were detected by the immunohistochemistry method. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay was carried out to detect apoptotic cells. The number of positive structures was counted semi-quantitatively by microscopy.

Results: Ki-67-positive cells were detected in only one case. An occasional to moderate number of nestin-positive structures was found in various tissues of relatively healthy lungs with different bronchial epitheliums. No apoptotic cells were seen in non-changed bronchial epithelium, compared with few apoptotic cells in metaplastic bronchial epithelium. Metaplastic bronchial epithelium contained more VEGF-positive cells than non-changed bronchial epithelium. Samples with non-changed, and metaplastic bronchial epithelium both contained a similar number of CD34-positive structures.

Conclusions: Proliferative activity and programmed cell death are not prominent events in normal lung tissue. A moderate number of nestin-positive cells in the alveolar epithelium and cartilage of bronchi with pseudostratified ciliated epithelium suggests a significant role of neuronal origin cells in these structures, to be intensified in metaplastic bronchial epithelium. A practically non-changed number of CD34-positive cells excludes any difference in stimulation of endothelial origin cells between lungs with different types of epithelium, while an increase in VEGF in structures with metaplastic epithelium suggests the presence/influence of tissue ischemia impact on possible development/maintenance of metaplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844367PMC
http://dx.doi.org/10.3390/medsci11010007DOI Listing

Publication Analysis

Top Keywords

bronchial epithelium
32
metaplastic bronchial
24
healthy lung
16
apoptotic cells
16
ki-67 nestin
12
lung tissue
12
epithelium
12
cells
11
bronchial
10
expression markers
8

Similar Publications

Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.

Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.

View Article and Find Full Text PDF

Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung.

Dev Biol

January 2025

Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:

During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.

View Article and Find Full Text PDF

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

L. (noni) is native to the tropical and semitropical areas and has been commercially available in health food stores and chain grocery stores specializing in natural foods, recently. Noni seeds are discarded as waste products through the industrial production of noni juice even though their bioactivity components might be a potential source of functional foods.

View Article and Find Full Text PDF

Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!