Agriculture, meteorological, and hydrological drought is a natural hazard which affects ecosystems in the central India of Maharashtra state. Due to limited historical data for drought monitoring and forecasting available in the central India of Maharashtra state, implementing machine learning (ML) algorithms could allow for the prediction of future drought events. In this paper, we have focused on the prediction accuracy of meteorological drought in the semi-arid region based on the standardized precipitation index (SPI) using the random forest (RF), random tree (RT), and Gaussian process regression (GPR-PUK kernel) models. A different combination of machine learning models and variables has been performed for the forecasting of metrological drought based on the SPI-6 and 12 months. Models were developed using monthly rainfall data for the period of 2000-2019 at two meteorological stations, namely, Karanjali and Gangawdi, each representing a geographical region of Upper Godavari river basin area in the central India of Maharashtra state which frequently experiences droughts. Historical data from the SPI from 2000 to 2013 was processed to train the model into machine learning model, and the rest of the 2014 to 2019-year data were used for testing to forecast the SPI and metrological drought. The mean square error (MSE), root mean square error (RMSE), adjusted R, Mallows' (Cp), Akaike's (AIC), Schwarz's (SBC), and Amemiya's PC were used to identify the best combination input model and best subregression analysis for both stations of SPI-6 and 12. The correlation coefficient ([Formula: see text]), mean absolute error (MAE), root mean square error (RMSE), relative absolute error (RAE), and root relative squared error (RRSE) were used to perform evaluation for SPI-6 and 12 months of both stations with RF, RT, and GPR-PUK kernel models during the training and testing scenarios. The results during testing phase revealed that the RF was found as the best model in forecasting droughts with values of [Formula: see text], MAE, RMSE, RAE (%), and RRSE (%) being 0.856, 0.551, 0.718, 74.778, and 54.019, respectively, for SPI-6 while 0.961, 0.361, 0.538, 34.926, and 28.262, respectively, for SPI-12 scales at Gangawdi station. Further, the respective values of evaluators at Karanjali station were 0.913 and 0.966, 0.541 and 0.386, 0.604 and 0.589, 52.592 and 36.959, and 42.315 and 31.394 for PUK kernel and RT models, respectively, during SPI-6 and SPI-12. Machine learning models are potential drought warning techniques because they take less time, have fewer inputs, and are less sophisticated than dynamic or scientific models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-25221-3 | DOI Listing |
BMC Chem
January 2025
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India.
A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k).
View Article and Find Full Text PDFBioData Min
January 2025
Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, South Korea.
Background: The treatment effects are heterogenous across patients due to the differences in their microbiomes, which in turn implies that we can enhance the treatment effect by manipulating the patient's microbiome profile. Then, the coadministration of microbiome-based dietary supplements/therapeutics along with the primary treatment has been the subject of intensive investigation. However, for this, we first need to comprehend which microbes help (or prevent) the treatment to cure the patient's disease.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Postoperative fever (POF) is a common occurrence in patients undergoing major surgery, presenting challenges and burdens for both patients and surgeons yet. This study endeavors to examine the incidence, identify risk factors, and establish a machine learning-based predictive model for POF following surgery of oral cancer.
Methods: A total of seven hundred and twenty-seven consecutive patients undergoing radical resection of oral cancer were retrospectively investigated.
BMC Pregnancy Childbirth
January 2025
Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314001, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Nephrology-Dialysis-Transplantation, University of Liège, CHU Sart Tilman, Liège, Belgium.
Background: Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical practice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!