L-Tryptophan (Trp) was shown to improve the gut barrier and growth of weaning piglets. However, whether excessive dietary Trp regulates amino acids (AAs) metabolism and gut serotonin (5-HT) homeostasis in piglets with gut inflammation is not clear yet. We hypothesize that excessive dietary Trp alleviates acetate-induced colonic inflammation and gut barrier damage in weaning piglets partially through the regulation of colonic AAs metabolism and 5-HT signaling. Fifty-four 21-day-old weaned piglets were divided into six groups: control, acetate, 0.2%Trp, 0.2%Trp + acetate, 0.4% Trp, and 0.4%Trp + acetate. Piglets were fed a basal diet supplemented with 0%, 0.2%, or 0.4% of Trp throughout the 12-day experiment. During days 0-7, all piglets had free access to diet and drinking water. On day 8, piglets were intrarectal administered with 10 mL of 10% acetate saline solution or 0.9% saline. During days 8-12, all piglets were pair-fed the same amount of feed per kg bodyweight. Results showed that excessive dietary Trp alleviated acetate-induced reductions in daily weight gain and increase in feed/gain ratio. Trp restored (P < 0.05) acetate-induced increase in concentrations of free aspartate, glutamate/glutamine, glycine, 5-HT, and 3-methylindole in the colon, downregulation of zonula occludens-1 and 5-HT reuptake transporter (SERT) expression and upregulation of IL-1β, IL-8, TLR4, and 5-HT receptor 2A (HTR2A) expression, and the increase in ratios of p-STAT3/ STAT3 and p-p65/p65 in the colon. The above findings suggested that excessive dietary Trp in the proper amount regulated colonic AAs metabolism, 5-HT homeostasis, and signaling that may contribute as important regulators of gut inflammation during the weaning transition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-023-03239-8DOI Listing

Publication Analysis

Top Keywords

excessive dietary
16
weaning piglets
12
dietary trp
12
piglets
9
amino acids
8
gut inflammation
8
gut barrier
8
aas metabolism
8
04% trp
8
trp
7

Similar Publications

Resources and land carrying capacity are vital to the survival and development of human society and form the foundation for ensuring food security. However, evaluating land carrying capacity solely based on grain production is overly simplistic. A comprehensive assessment from the perspective of dietary nutrition is needed to more accurately reflect the actual carrying capacity of land.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) frequently coexists with cardiorenal complications. Therefore, a holistic approach to patient management is required, with specialists such as primary care physicians, cardiologists, endocrinologists, and nephrologists working together to provide patient care. Although glycemic control is important in the management of T2D, patients with T2D and acceptable glycemic control are still at risk from cardiovascular (CV) events such as stroke, heart attack, and heart failure (HF).

View Article and Find Full Text PDF

Background: Unhealthy sleep and exposures to oxidative factors are both associated with poor cognitive performance (PCP), but limited evidence has been found regarding the relationship between sleep patterns and oxidative factor exposures independently or jointly with the risk of PCP.

Methods: We analyzed data from 2249 adults aged ≥60 years in the National Health and Nutrition Examination Survey (NHANES) database (2011-2014). Self-reported questionnaires were used to collect data on sleep duration and sleep disorder, categorizing sleep duration into three groups based on responses: short (6 hours or less per night), normal (7-8 hours per night), or long (9 hours or more per night).

View Article and Find Full Text PDF

First Report of Microplastics in Wild Long-Tailed Macaque () Feces at Kosumpee Forest Park, Maha Sarakham, Thailand.

Vet Sci

December 2024

Departments of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA.

Microplastic pollution is a global concern arising from the extensive production and use of plastics. The prevalence of microplastics (MPs) in the environment is escalating due in large part to the excessive use of plastics in various human-related activities. Consequently, animals are being exposed to MPs through dietary intake, which poses significant health risks to the wild populations.

View Article and Find Full Text PDF

Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!