Green-solvent Processable Dopant-free Hole Transporting Materials for Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Published: March 2023

The commercialization of perovskite solar cells (PVSCs) urgently requires the development of green-solvent processable dopant-free hole transporting materials (HTMs). However, strong intermolecular interactions that ensure high hole mobility always compromise the solubility and film-forming ability in green solvents. Herein, we show a simple but effective design strategy to solve this trade-off, that is, constructing star-shaped D-A-D structure. The resulting HTMs (BTP1-2) can be processed by green solvent of 2-methylanisole (2MA), a kind of food additive, and show high hole mobility and multiple defect passivation effects. An impressive efficiency of 24.34 % has been achieved for 2MA-processed BTP1 based inverted PVSCs, the highest value for green-solvent processable HTMs so far. Moreover, it is manifested that the charge separation of D-A type HTMs at the photoinduced excited state can help to passivate the defects of perovskites, indicating a new HTM design insight.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202218752DOI Listing

Publication Analysis

Top Keywords

green-solvent processable
12
processable dopant-free
8
dopant-free hole
8
hole transporting
8
transporting materials
8
perovskite solar
8
solar cells
8
high hole
8
hole mobility
8
hole
4

Similar Publications

Anisole Processible n-Type Conjugated Polymers Synthesized via C─H/C─H Oxidative Direct Arylation Polycondensation for Organic Electrochemical Transistors.

Macromol Rapid Commun

November 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.

Article Synopsis
  • The study focuses on addressing the shortage of n-type polymers for organic electrochemical transistors (OECTs), which are crucial for electronic devices.
  • It introduces three new polymers synthesized using an environmentally friendly method called oxidative direct arylation polycondensation (Oxi-DArP), which utilizes unfunctionalized monomers.
  • Among them, the polymer gTzDPP-C8 demonstrated exceptional performance, achieving high transconductance and capacitance, highlighting the effectiveness of this new synthesis method for creating high-performance n-type organic materials.
View Article and Find Full Text PDF

Highly Conductive Alcohol-Processable n-Type Conducting Polymer Enabled by Finely Tuned Electrostatic Interactions for Green Organic Electronics.

Angew Chem Int Ed Engl

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China.

Article Synopsis
  • Solution-processable conducting polymers are transforming organic electronics by changing how electronic devices are made, especially with p-type materials like PEDOT:PSS achieving commercial success.
  • N-type conducting polymers still face challenges, mainly requiring toxic solvents that hinder their environmental sustainability and large-scale use.
  • A new high-performance n-type polymer, PBFDO:PEOx, was developed using alcohol for processing, showing excellent conductivity and stability, making it a promising option for eco-friendly electronic applications.
View Article and Find Full Text PDF

As the rise of nonfullerene acceptors (NFA) has allowed lab-scale organic solar cells (OSC) to reach 20% efficiency, translating these devices into roll-to-roll compatible fabrication still poses many challenges for researchers. Among these are the use of green solvent solubility for large-scale manufacture, roll-to-roll compatible fabrication, and, not least, information on charge carrier dynamics in each upscaling step, to further understand the gap in performance. In this work, the reproducibility of champion devices using slot-die coating with 14% power conversion efficiency (PCE) is demonstrated, under the condition that the optimal thickness is maintained.

View Article and Find Full Text PDF

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers.

View Article and Find Full Text PDF

Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!