Quantitative analysis of chiral molecules in various solvents is essential. However, there are still many challenges to enhancing the sensitivity in precisely determining both concentration and chirality. Here, we built an algorithmic methodology to predict and optimally design the chiroptical response of chiral plasmonic sensors for a specific target chiral analyte with the aid of deep learning. Based upon the analytic and intuitive understanding of the Born-Kuhn type plasmonic nanodimer, we designed and trained the neural networks that can successfully predict the chiroptical properties and further inversely design the plasmonic structure to achieve the intended circular dichroism. The developed algorithm could identify the optimum structure exhibiting the maximum sensitivity for the given specific analytes. Surprisingly, we discovered that sensitivity strongly depends on the various conditions of analytes and can be finely tuned with the structural parameters of plasmonic nanodimers. We envision that this study can provide a general platform to develop ultrasensitive chiral plasmonic sensors whose structure and sensitivity have been evolved algorithmically for adoption in specific applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c08867 | DOI Listing |
Small
January 2025
Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.
Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Engineering "Enzo Ferrari", (DIEF), Univ. of Modena, Via Vivarelli 10, 41125 Modena, Italy.
Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.
View Article and Find Full Text PDFACS Photonics
January 2025
Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom.
The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
Chiral plasmonic crystals with 5-fold symmetries were synthesized from Au icosahedra, decahedra, and pentatwinned nanorods, unraveling the effects of seed twinning and aspect ratio on chiral overgrowth directed by L-glutathione. The influence of seed size on the overgrowth from pentatwinned nanorods was also studied, giving insight into the role volumetric strain plays in chiral crystal formation. Single particle reconstructions were obtained using electron tomography, and optical simulations on the measured structures verify their optical chirality.
View Article and Find Full Text PDFNano Lett
January 2025
NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!