All pandemic viruses have eventually adapted to human hosts so that they become more transmissible and less virulent. The XBB Omicron subvariant is rapidly becoming the dominant strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Singapore from October 2022 and is one of several variants circulating globally with the potential to dominate autumn/winter waves in different countries. The XBB Omicron subvariant has demonstrated increased transmissibility through an apparent propensity for immune evasion. This is to be expected in the natural evolution of a virus in a population highly vaccinated with a vaccine targeting the spike protein of the original Wuhan strain of the virus. This review explores the important implications of the rising prevalence of the SARS-CoV-2 Omicron subvariant for public health in Singapore and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698282PMC
http://dx.doi.org/10.4103/singaporemedj.SMJ-2022-180DOI Listing

Publication Analysis

Top Keywords

omicron subvariant
16
xbb omicron
12
covid-19 xbb
4
omicron
4
subvariant
4
subvariant signal
4
signal pandemic?
4
pandemic? pandemic
4
pandemic viruses
4
viruses eventually
4

Similar Publications

Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.

EBioMedicine

January 2025

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:

Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.

Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.

View Article and Find Full Text PDF

SARS-CoV-2, the virus responsible for COVID-19, has undergone significant genetic evolution since its emergence in 2019. This study examines the genomic diversity of SARS-CoV-2 in Brazil after the worst phase of the pandemic, the wider adoption of routine vaccination, and the abolishment of other non-pharmacological preventive measures from July 2022 to July 2024 using 55,951 sequences retrieved from the GISAID database. The analysis focuses on the correlation between confirmed COVID-19 cases, sequencing efforts across Brazilian states, and the distribution and evolution of viral lineages.

View Article and Find Full Text PDF

Background: The spread of the BA.5 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has increased the number of hospitalized children. However, the impact of the spread of new omicron subvariants in children remains poorly described.

View Article and Find Full Text PDF

An allelic atlas of immunoglobulin heavy chain variable regions reveals antibody binding epitope preference resilient to SARS-CoV-2 mutation escape.

Front Immunol

January 2025

State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.

Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population.

View Article and Find Full Text PDF

Background: We previously reported the safety and immunogenicity data from a randomized trial comparing the booster responses of vaccinees who received monovalent (MV) recombinant protein Beta-variant (MVB.1.351) and MV ancestral protein (MVD614) vaccines with AS03 adjuvant (Sanofi/GSK) to booster response of vaccinees who received mRNA MV ancestral strain BNT162b2 vaccine (Pfizer-BioNTech).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!