Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843064PMC
http://dx.doi.org/10.1172/JCI165307DOI Listing

Publication Analysis

Top Keywords

entry receptors
8
alphavirus infection
8
receptors gateway
4
gateway alphavirus
4
infection alphaviruses
4
alphaviruses enveloped
4
enveloped insect-transmitted
4
insect-transmitted positive-sense
4
positive-sense rna
4
rna viruses
4

Similar Publications

Development of Chimeric Nanobody-Granzyme B Functionalized Ferritin Nanoparticles for Precise Tumor Therapy.

Pharmacol Res

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China. Electronic address:

T-cell lymphomas (TCLs) are heterogeneous malignancies with limited treatment options and poor outcomes. The efficacy of traditional T-cell therapies, including chimeric antigen receptor (CAR) T cells, is often constrained by immunosuppressive factors and the tumor microenvironment. On the other hand, although direct Granzyme B (GrB) administration can effectively induce tumor cell apoptosis, it lacks universal tumor targeting and efficient cellular entry mechanisms.

View Article and Find Full Text PDF

Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells.

Mol Biol Cell

January 2025

Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.

Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and siRNA-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection.

View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Background: Portopulmonary hypertension (PoPH) occurs in patients with advanced liver disease and can be a contraindication to liver transplant (LT). Improvement of hemodynamic parameters with pulmonary arterial hypertension (PAH) therapies (including endothelin receptor antagonists [ERAs]) may help some patients to become eligible for LT.

Methods: We conducted a retrospective secondary data analysis to describe the clinical course and management of PoPH in patients on a US registry LT waitlist and outcomes in patients receiving an ERA.

View Article and Find Full Text PDF

Pathogen Binding and Entry: Molecular Interactions with the Insect Gut.

Annu Rev Entomol

January 2025

Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA; email:

The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!