Bamboo is a nontimber woody plant featuring a long vegetative stage and uncertain flowering time. Therefore, the genes belonging to flowering repressors might be essential in regulating the transition from the vegetative to reproductive stage in bamboo. The ( ) gene plays a pivotal role in floral transition and development. However, little is known about the bamboo homologues. In this study, is isolated by analysis of the . transcriptome database. Phylogenetic analysis shows that is closely related to (rice homolog). is ubiquitously expressed in various tissues, predominantly in vegetative tissues. To investigate the function of , is overexpressed in and rice under the influence of the 35S promoter. Overexpression of in causes early flowering and produces abnormal petals and sepals. Quantitative real-time PCR reveals that overexpression in produces an early flowering phenotype by downregulating and upregulating and produces abnormal floral organs by upregulating , and expressions. Simultaneously, overexpression of in rice alters the expressions of flowering-related genes such as , , and and promotes flowering under field conditions. In addition, PvSVP1 may be a nuclear protein which interacts with PvVRN1 and PvMADS56 on the yeast two-hybrid and BiFC systems. Our study suggests that may play a vital role in flowering time and development by interacting with PvVRN1 and PvMADS56 in the nucleus. Furthermore, this study paves the way toward understanding the complex flowering process of bamboo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160235 | PMC |
http://dx.doi.org/10.3724/abbs.2022199 | DOI Listing |
Int J Radiat Biol
January 2025
Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.
Purpose: Cowpea ( (L.) Walp.) is a major legume crops for human consumption and livestock feed in tropical regions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFHeliyon
December 2024
Soil Science Division, Bangaldesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh.
Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.
View Article and Find Full Text PDFPeerJ
December 2024
Field Crops/Agricultural Faculty, Ordu University, Ordu, Turkey.
It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!