The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CL is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CL. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (), liensinine (), isoliensinine (), dinklacorine (), tiliacorinine (), 2'-nortiliacorinine (), and yanangcorinine (). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CL during 100 ns in molecular dynamics (MD) simulation. Moreover, the enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CL. To our delight, isoliensinine () isolated from demonstrated the highest inhibition of protease activity with the IC value of 29.93 μM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an model for the development of effective anti-SARS-CoV-2 drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.2c01309 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:
SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.
SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.
This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!