Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly ( < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-, PPAR, SREBP-1c, and FAS) and proinflammatory (TNF- and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840553 | PMC |
http://dx.doi.org/10.1155/2023/6828230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!