Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844033 | PMC |
http://dx.doi.org/10.1186/s12934-022-01987-y | DOI Listing |
Food Res Int
January 2025
Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Lyngby, Denmark. Electronic address:
This study aimed to promote the valorization of lupin seeds by extracting both non-polar and polar fractions to produce a protein-rich flour suitable for food applications. Green extraction methods such as Supercritical Fluid Extraction (SFE) and SFE followed by gas-expanded liquid extraction with ethanol/CO mixtures were employed. SFE yielded lupin oil with extraction yields ranging from 2.
View Article and Find Full Text PDFFood Chem
December 2024
Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:
This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.
View Article and Find Full Text PDFHeliyon
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia.
Municipal sewage sludge, a by-product of wastewater treatment plants, presents environmental challenges due to its complex composition. Particular concern is the lipophilic and aliphatic compounds that pose risks to the environment and human health. This study focuses on the efficient removal of those compounds from sewage sludge using several organic solvents (hexane, toluene, chloroform, dichloromethane, acetone, hexane-methanol mixture, ethanol, and methanol) and ionic liquids (ILs) like tetrakis(hydroxymethyl)phosphonium chloride and 1-ethyl-3-methylimidazolium acetate by solvent extraction techniques.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland.
Oleogels are structured materials formed by immobilizing oil within a polymer network. This study aimed to synthesize bilayer foamed oleogels using Ecogel™ as an emulsifier-a natural gelling and emulsifying agent commonly used to stabilize emulsions. Ecogel™ is multifunctional, particularly in cosmetic formulations, where it aids in creating lightweight cream gels with a cooling effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!