AI Article Synopsis

  • - Plant breeding for rice productivity is focusing on creating a haploid development pipeline, with the CENH3 gene being crucial for haploid induction.
  • - Researchers identified different alleles of the OsCENH3 gene through PCR and existing data, discovering most have only minor changes, while some key variants affecting the protein's structure were noted.
  • - The study found 15 different haplotypes and suggested that structural variations in CENH3 could influence future research on haploid induction and gene interactions within rice species.

Article Abstract

Plant breeding efforts to boost rice productivity have focused on developing a haploid development pipeline. CENH3 gene has emerged as a leading player that can be manipulated to engineer haploid induction system. Currently, allele mining for the OsCENH3 gene was done by PCR-based resequencing of 33 wild species accessions of genus Oryza and in silico mining of alleles from pre-existing data. We have identified and characterized CENH3 variants in genus Oryza. Our results indicated that the majority CENH3 alleles present in the Oryza gene pool carry synonymous substitutions. A few non-synonymous substitutions occur in the N-terminal Tail domain (NTT). SNP A/G at position 69 was found in accessions of AA genome and non-AA genome species. Phylogenetic analysis revealed that non-synonymous substitutions carrying alleles follow pre-determined evolutionary patterns. O. longistaminata accessions carry SNPs in four codons along with indels in introns 3 and 6. Fifteen haplotypes were mined from our panel; representative mutant alleles exhibited structural variations upon modeling. Structural analysis indicated that more than one structural variant may be exhibited by different accessions of single species (Oryza barthii). NTT allelic mutants, though not directly implicated in HI, may show variable interactions. HI and interactive behavior could be ascertained in future investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842635PMC
http://dx.doi.org/10.1038/s41598-023-28053-wDOI Listing

Publication Analysis

Top Keywords

genus oryza
12
oscenh3 gene
8
silico mining
8
non-synonymous substitutions
8
oryza
5
uncovering natural
4
natural allelic
4
structural
4
allelic structural
4
structural variants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!