Electrochemically modulated interaction of MXenes with microwaves.

Nat Nanotechnol

A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.

Published: April 2023

Dynamic control of electromagnetic wave jamming is a notable technological challenge for protecting electronic devices working at gigahertz frequencies. Foam materials can adjust the reflection and absorption of microwaves, enabling a tunable electromagnetic interference shielding capability, but their thickness of several millimetres hinders their application in integrated electronics. Here we show a method for modulating the reflection and absorption of incident electromagnetic waves using various submicrometre-thick MXene thin films. The reversible tunability of electromagnetic interference shielding effectiveness is realized by electrochemically driven ion intercalation and de-intercalation; this results in charge transfer efficiency with different electrolytes, accompanied by expansion and shrinkage of the MXene layer spacing. We finally demonstrate an irreversible electromagnetic interference shielding alertor through electrochemical oxidation of MXene films. In contrast with static electromagnetic interference shielding, our method offers opportunities to achieve active modulation that can adapt to demanding environments.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-022-01308-9DOI Listing

Publication Analysis

Top Keywords

electromagnetic interference
16
interference shielding
16
reflection absorption
8
electromagnetic
6
electrochemically modulated
4
modulated interaction
4
interaction mxenes
4
mxenes microwaves
4
microwaves dynamic
4
dynamic control
4

Similar Publications

Electroacoustic imaging is an imaging modality used to detect electric field energy distribution during electroporation, offering valuable guidance for clinical procedures, particularly in deep tissues. Traditionally, single-element piezoelectric transducers or arrays have been employed for this purpose. However, these piezoelectric sensors are sensitive to electromagnetic interference and require physical contact with the sample through a coupling medium, raising concerns for both clinical and preclinical applications.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Lightweight 3D-printed chitosan/MXene aerogels for advanced electromagnetic shielding, energy harvesting, and thermal management.

Carbohydr Polym

March 2025

Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada. Electronic address:

This study focuses on the fabrication of 3D-printed chitosan/TiCT-MXene aerogels with varying MXene concentrations (1, 2, 5, and 10 wt%) using the direct ink writing (DIW) method. The inks were freeze-dried to form aerogels, and FTIR and XRD analyses confirmed interactions between chitosan and MXene molecules, leading to increased spacing between MXene nanosheets. Rheological testing showed improved shear-thinning behavior, enhancing printability.

View Article and Find Full Text PDF

3D-printed sodium alginate/carbon nanotube/graphene porous scaffolds crosslinked with Ca for high-performance electromagnetic shielding and Joule heating.

Carbohydr Polym

March 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China. Electronic address:

High-performance green functional materials have garnered significant interest for electromagnetic interference (EMI) shielding applications, but creating customized, low-density, high-strength and high-efficiency biomass-based shielding materials remains challenging. In this study, lightweight Ca doped sodium alginate (SA) porous scaffolds with a carbon nanotube (CNT)/graphene (Gr) hybrid conductive network were fabricated via direct ink writing (DIW) 3D printing. The SA/CNT/Gr inks with unique rheological properties were formulated and architectures with arbitrarily customized structures could be freely constructed based on the printable inks.

View Article and Find Full Text PDF

The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!