In recent years the research about topological photonic structures has been a very attractive topic in nanoscience from both a basic science and a technological point of view. In this work we propose a two-dimensional topological photonic structure, composed of a trivial and a topological photonic crystals, made of dumbbell-shaped dielectric rods. The topological behavior is induced by introducing an angular perturbation in the dumbbell-shaped dielectric rods. We show that this composed structure supports pseudospin interface states at the interface between the trivial and topological crystals. Our numerical results show that a bandgap is opened in the band structure by introducing the angular perturbation in the system, lifting the double degeneracy of the double Dirac cone at the [Formula: see text] point of the Brillouin zone, despite keeping the [Formula: see text] symmetry group. A pseudospin topological behavior was observed and analyzed with emphasis on the photonic bands at the [Formula: see text] point. We have also investigated the robustness of these pseudospin interface states and, according with our numerical results, we conclude that they are robust against defects, disorder and reflection. Finally, we have shown that the two edge modes present energy flux propagating in opposite directions, which is the photonic analogue of the quantum spin Hall effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842764 | PMC |
http://dx.doi.org/10.1038/s41598-023-27868-x | DOI Listing |
Carbohydr Polym
March 2025
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
3D printing technology is one of the most promising strategies for constructing topological functional materials. The development of functional inks is a core issue in the technical development of 3D printing technology. In this study, we engineered photonic crystal inks based on chiral nematic liquid crystals of cellulose derivative, i.
View Article and Find Full Text PDFNanophotonics
January 2025
Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Madrid, 28040 Spain.
Polar biaxial crystals with extreme anisotropy hold promise for the spatial control and the manipulation of polaritons, as they can undergo topological transitions. However, taking advantage of these unique properties for nanophotonic devices requires to find mechanisms to modulate dynamically the material response. Here, we present a study on the propagation of surface phonon polaritons (SPhPs) in a photonic architecture based on a thin layer of α-MoO deposited on a semiconducting 4H-SiC substrate, whose carrier density can be tuned through photoinduction.
View Article and Find Full Text PDFNanophotonics
January 2025
Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
We present a continuative definition of topological charge to depict the polarization defects on any resonant diffraction orders in photonic crystal slab regardless they are radiative or evanescent. By using such a generalized definition, we investigate the origins and conservation of polarization defects across the whole Brillouin zone. We found that the mode crossings due to Brillouin zone folding contribute to the emergence of polarization defects in the entire Brillouin zone.
View Article and Find Full Text PDFNanophotonics
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:
Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!