A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibiting myostatin signaling partially mitigates structural and functional adaptations to hindlimb suspension in mice. | LitMetric

AI Article Synopsis

  • New treatments for muscle wasting can help people with weak muscles, like those recovering from injuries or astronauts in space
  • Researchers studied how myostatin, a protein that affects muscle loss, impacts mice that were kept in a position that simulates not using their legs
  • Blocking myostatin helped reduce some muscle loss and improve strength, suggesting it might help in both space missions and regular health situations

Article Abstract

Novel treatments for muscle wasting are of significant value to patients with disease states that result in muscle weakness, injury recovery after immobilization and bed rest, and for astronauts participating in long-duration spaceflight. We utilized an anti-myostatin peptibody to evaluate how myostatin signaling contributes to muscle loss in hindlimb suspension. Male C57BL/6 mice were left non-suspended (NS) or were hindlimb suspended (HS) for 14 days and treated with a placebo vehicle (P) or anti-myostatin peptibody (D). Hindlimb suspension (HS-P) resulted in rapid and significantly decreased body mass (-5.6% by day 13) with hindlimb skeletal muscle mass losses between -11.2% and -22.5% and treatment with myostatin inhibitor (HS-D) partially attenuated these losses. Myostatin inhibition increased hindlimb strength with no effect on soleus tetanic strength. Soleus mass and fiber CSA were reduced with suspension and did not increase with myostatin inhibition. In contrast, the gastrocnemius showed histological evidence of wasting with suspension that was partially mitigated with myostatin inhibition. While expression of genes related to protein degradation (Atrogin-1 and Murf-1) in the tibialis anterior increased with suspension, these atrogenes were not significantly reduced by myostatin inhibition despite a modest activation of the Akt/mTOR pathway. Taken together, these findings suggest that myostatin is important in hindlimb suspension but also motivates the study of other factors that contribute to disuse muscle wasting. Myostatin inhibition benefitted skeletal muscle size and function, which suggests therapeutic potential for both spaceflight and terrestrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842652PMC
http://dx.doi.org/10.1038/s41526-022-00233-4DOI Listing

Publication Analysis

Top Keywords

myostatin inhibition
20
hindlimb suspension
16
myostatin signaling
8
muscle wasting
8
anti-myostatin peptibody
8
myostatin
8
skeletal muscle
8
strength soleus
8
hindlimb
7
suspension
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!