Photocured Liquid-Crystalline Polymer Electrolytes with 3D Ion Transport Pathways for Electromechanical Actuators.

ACS Appl Mater Interfaces

Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki305-0047, Japan.

Published: January 2023

Self-assembly of ionic molecules into hierarchical ordered structures is a promising route to new types of solid electrolytes with enhanced ion transport. Herein, we report a liquid-crystalline polymer electrolyte membrane that contains three-dimensionally (3D) interconnected ionic pathways. To build this membrane, we used wedge-shaped amphiphilic molecules that have two ionic heads and a lipophilic tail. These molecules were combined with a low content of ionic liquid (5.6 wt %) to form a hexagonal columnar phase, where the self-assembled lipophilic cylinders were surrounded by the ionic shell. Photopolymerization of this phase produced flexible nanostructured films with 3D ionic pathways, which can serve as an electrolyte layer in soft robotic actuators. Ionic transport in the 3D pathways leads to shape memory capability as well as durable bending actuation with a voltage-controllable blocking force. Furthermore, we find a significant enhancement of actuation for the nanostructured electrolyte compared with the corresponding amorphous electrolyte.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c19382DOI Listing

Publication Analysis

Top Keywords

liquid-crystalline polymer
8
ion transport
8
transport pathways
8
ionic pathways
8
ionic
7
photocured liquid-crystalline
4
polymer electrolytes
4
electrolytes ion
4
pathways
4
pathways electromechanical
4

Similar Publications

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

When nematic liquid crystal elastomers (LCEs) crosslinked at their isotropic phase are quenched to the nematic phase, they show polydomain patterns, in which nematic microdomains with different orientations self-organize into a three-dimensional mosaic with characteristic correlation patterns. The orientational correlation length of the domain, which is usually in the micrometer range, is believed to emerge as a result of a competition between liquid crystalline ordering and frozen network inhomogeneity. Although polydomain patterns show potentials as the basic platform for optical, memory, and mechanical devices, no study exists regarding how they are modulated by experimentally accessible parameters.

View Article and Find Full Text PDF

Schlieren texture and topography induced confinement in an organic exciton-polariton laser.

Nat Commun

January 2025

Humboldt Centre for Nano- and Biophotonics, Institute for Light and Matter, Department of Chemistry and Biochemistry, University of Cologne, Köln, Germany.

Non-linearities in organic exciton-polariton microcavities represent an attractive platform for quantum devices. However, progress in this area hinges on the development of material platforms for high-performance polariton lasing, scalable and sustainable fabrication, and ultimately strategies for electrical pumping. Here, we show how introducing Schlieren texturing and a rough intra-cavity topography in a liquid crystalline conjugated polymer enables strong in-plane confinement of polaritons and drastic enhancement of the lasing properties.

View Article and Find Full Text PDF

Exploiting photopolymerization to modulate liquid crystalline network actuation.

Soft Matter

January 2025

LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens.

View Article and Find Full Text PDF

Circularly Polarized Room-Temperature Phosphorescence from Dye-Doped Cholesteric Liquid Crystalline Polymer Networks.

J Phys Chem Lett

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Circularly polarized luminescence (CPL) materials have drawn increasing attention for their potential applications in optical displays and chemo/biosensing. Nevertheless, the construction of circularly polarized room-temperature phosphorescence (CPRTP) materials is still a significant challenge. In this work, four liquid crystalline polymer network films with RTP properties have been fabricated via photopolymerization of cholesteric liquid-crystalline mixtures containing different amounts of commercially available dyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!