Considering that HS is a hazardous gas that poses a significant risk to people's lives, research into HS gas sensors has garnered a lot of interest. This work reports a CuO/ZnO multifaceted nanostructures(NS) created by heat treating Cu/ZIF-8 impregnation precursors, and their microstructure and gas sensing characteristics were examined using various characterization techniques (XRD, XPS, SEM, TEM, and BET). The as-prepared hollow CuO/ZnO multifunctional nanostructures had a high gas response value (425@50 ppm HS gas), quick response and recovery times (57/191s @20 ppm), a low limit of detection (1.6@500 ppb HS), good humidity resistance and highly selective towards HS gas. The hollow CuO/ZnO multifaceted nanostructures possessed enhanced gas sensing capabilities which may be related to their porous hollow nanostructures, the manufactured p-CuO/n-ZnO heterojunctions, and the spillover effect between CuO and HS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137827DOI Listing

Publication Analysis

Top Keywords

gas
8
cuo/zno multifaceted
8
gas sensing
8
hollow cuo/zno
8
cuo-decorated mof
4
mof derived
4
derived zno
4
zno polyhedral
4
nanostructures
4
polyhedral nanostructures
4

Similar Publications

The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.

View Article and Find Full Text PDF

Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

Controlling crystal planes of biomass-derived carbon based Mo2C NPs and the electrochemical performance.

J Chem Phys

January 2025

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China.

The electrochemical property of Mo2C nanoparticles (NPs) depends on the structure and crystal planes. Herein, Mo2C nanoparticles were prepared and dispersed on carbon nanosheets by the construction of a biomass-derived carbon precursor, and the exposed dual crystal planes were also controlled by optimal conditions. The structure, compositions, and morphology of the carbon-based Mo2C were characterized, and the Mo2C NPs were well dispersed on the carbon nanosheets.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!