Basic helix-loop-helix (bHLH) proteins are dimeric transcription factors (TFs) involved in various plant physiological and biological processes. Despite this, little is known about the molecular properties and roles of bHLH TFs in pitaya betalain biosynthesis. Here we report the identification of 165 HubHLH genes in H. undantus genome, their chromosomal distribution, physiochemical characteristics, conserved motifs, gene structure, phylogeny and synteny of HubHLH genes. Based on phylogenetic relationship analysis, the 165 HubHLHs were divided into 26 subfamilies and unequally distributed on the 11 chromosomes of pitaya. Based on the pitaya transcriptome data, a candidate gene HubHLH159 was obtained, and the real-time quantitative PCR analysis confirmed that HubHLH159 showed a high expression level in 'Guanhuahong' pitaya (red-pulp) at mature stage, indicating its role in betalain biosynthesis. HubHLH159 is a Group II protein and contains a bHLH domain. It is a nuclear protein with transcriptional activation activity. Dual luciferase reporter assays and virus-induced gene silencing (VIGS) experiments showed that HubHLH159 promotes betalain biosynthesis by activating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The results of the present study lay a new theoretical reference for the regulation of pitaya betalain biosynthesis and also provides as essential basis for the future analysis of the functions of HubHLH gene family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2023.111595 | DOI Listing |
J Agric Food Chem
January 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
Betalains, a distinctive group of nitrogen-containing pigments exclusive to the Caryophyllales order, possess diverse biological activities such as antioxidant, anti-inflammatory, and antimicrobial properties, making them highly valuable for applications in food, nutraceutical, and pharmaceutical industries. This Review provides a comprehensive analysis of betalain biosynthesis, structural diversity, and ecological significance, highlighting their roles in enhancing stress resilience, adaptation mechanisms, and plant evolutionary strategies. The evolutionary development of betalains is explored, revealing their emergence through gene duplication events and providing insights into their mutual exclusivity with anthocyanins.
View Article and Find Full Text PDFNutrients
December 2024
Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
L. (Malabar spinach, Basellaceae), widely consumed as a leafy vegetable, produces dark-colored fruits rich in betacyanins, including rare 6-glycosylated derivatives called gomphrenins. Comprehensive studies on the anti-inflammatory potential of its gomphrenin fraction (A) and crude extract (B) employed various analytical and biological methods.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
In the current study, the effects of fermentation by Lactobacillus acidophilus, Levilactobacillus brevis or Lactiplantibacillus plantarum (La/Lb/Lp, 1-2.5%) and incubation (30/37 °C, C1/C2) of red beetroot juice on the profile of betalains and polyphenols (UHPLC-DAD-MS), and antioxidant capacity using photochemiluminescence (PCL) and spectrophotometric assays (DPPH/ABTS) was investigated. Additionally, anti-glycaemic (anti-AGEs) and anticholinergic (anti-AChE) potential in vitro was analysed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
Celosia argentea is a plant known for producing bioactive compounds, including betalains, which possess various biological and pharmaceutical properties. This study aimed to investigate the effect of biotic and abiotic elicitors on betalains production and their antioxidant activity in cell suspension cultures of C. argentea.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Background: Dopaxanthin is a natural pigment betaxanthins family member with the highest antioxidant and free radical scavenging activities. However, its relatively low content in plants limited the wide range of applications. Cost-efficient microbial production, therefore, showed an attractive alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!