Background: Decolonisation is considered a valuable means to reduce Staphylococcus aureus infection rates. However, previous topical strategies targeting the nose or skin had little success, and oral antibiotic-based decolonisation is ill advised because of eradication of the microbiota and development of antibiotic resistance. We previously showed that the probiotic Bacillus subtilis significantly diminished S aureus at the main intestinal colonisation site via specific bacterial interaction in mice; in this study, we tested this probiotic approach to control S aureus colonisation in humans.
Methods: We did a single-centre, phase 2, double-blind, randomised, placebo-controlled trial in adults from the Songkhla region of Thailand who were colonised by S aureus. Eligible participants were adults (aged ≥18 years) without history of intestinal disease, antibiotic treatment, or hospital admission within the previous 90 days. Participants were excluded if they were pregnant, breastfeeding, taking probiotics, or had diarrhoea. Participants were allocated (1:1) to groups by computer randomisation in blocks of four, and research coordinators were masked to group allocation. Participants received 250 mg of probiotic B subtilis MB40 or placebo once per day for 30 days and S aureus colonisation was determined after the last dose was received. The primary outcome was colonisation by S aureus (continuous, mean decrease in colony-forming-unit count) in the intestine (by faecal counts) and nares (by nasal swabs) after intervention (30-day regimen of B subtilis probiotic). This trial is registered with the Thai Clinical Trials Registry, TCTR20210128003.
Findings: The trial was done between Jan 29 and June 30, 2021, with enrolment taking place from Jan 29 to April 6, 2021. 115 participants were colonised by S aureus, either in the intestine (n=84), nose (n=50), or both (n=19), and were randomly assigned to treatment (n=55) and placebo groups (n=60). Oral probiotic B subtilis resulted in significant reduction of S aureus in stool (96·8%; p<0·0001) and nose (65·4%; p=0·0002). There were no differences in adverse effects or significant microbiome changes between the intervention and placebo groups.
Interpretation: B subtilis probiotic eliminated more than 95% of the total S aureus colonising the human body without altering the microbiota. This probiotic strategy offers several key advantages over presently used decolonisation strategies for potential use in people with chronic or long-term risk of S aureus infection. Furthermore, by establishing a defining role of the intestinal colonisation site, our findings call for revisiting fundamental notions about S aureus colonisation.
Funding: National Research Council of Thailand and US National Institutes of Health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932624 | PMC |
http://dx.doi.org/10.1016/S2666-5247(22)00322-6 | DOI Listing |
Folia Microbiol (Praha)
January 2025
Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
Medical students are exposed to the hospital environment and patients during their studies, increasing the risk of exposure to virulent and antibiotic-resistant isolates of Staphylococcus aureus. The aim of the study is to determine the prevalence of Staphylococcus aureus among medical students who have varying levels of exposure to the hospital environment to provide valuable insights into the risk of colonization and transmission. Nasal swabs and fingerprints were obtained and cultured on a selective medium for staphylococci.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address:
The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells.
View Article and Find Full Text PDFInt J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, P. R. China. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!