RNA deadenylation complexes in development and diseases.

Biochem Cell Biol

Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada.

Published: April 2023

RNA deadenylation, the process of shortening of the 3' poly(A) tail of an RNA molecule, is one of the key steps of post-transcriptional regulation of gene expression in eukaryotic cells. PAN2/3 and CCR4-NOT (CNOT) are the two dominant RNA deadenylation complexes, which play central roles in mediating mRNA decay and translation. While degradation is the final fate of virtually all RNAs in their life cycles, selection of RNA targets as well as control of the rate and timing of RNA decay, in coordination with other molecular pathways, including translation, can be modulated in certain contexts. Such regulation influences cell growth, proliferation, and differentiation at the cellular level; and contributes to establish polarity and regulate signaling at the tissue level. Dysregulation of deadenylation processes have also been implicated in human diseases ranging from cardiac diseases and neurodevelopmental disorders to cancers. In this review, we will discuss mechanisms of gene expression control mediated by the RNA deadenylation complexes and highlight relevant evidence supporting the emerging roles of RNA deadenylation and its regulatory proteins during development and in diseases. A systemic understanding of these mechanisms will be a critical foundation for development of effective strategies to therapeutically target them.

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2022-0325DOI Listing

Publication Analysis

Top Keywords

rna deadenylation
20
deadenylation complexes
12
rna
8
development diseases
8
gene expression
8
deadenylation
5
complexes development
4
diseases
4
diseases rna
4
deadenylation process
4

Similar Publications

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Nat Commun

January 2025

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

3-Acetyldeoxynivalenol induces pyroptosis in leydig cells via METTL3-mediated N6-methyladenosine modification of NLRP3.

Ecotoxicol Environ Saf

December 2024

Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, 200240, China.

3-acetyldeoxynivalenol (3-ADON), an acetylated derivative of deoxynivalenol, is a prevalent contaminant found in food products contaminated with mycotoxins. While the toxicological effects of 3-ADON on human and animal health are well-documented, its specific impact on the reproductive system remains underexplored. In this study, we comprehensively examined the toxicological effects of 3-ADON on TM3 Leydig cells through both in vivo and in vitro experimental models.

View Article and Find Full Text PDF

Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress.

Elife

December 2024

Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States.

Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution.

View Article and Find Full Text PDF

The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation.

bioRxiv

November 2024

Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.

LARP4 interacts with poly(A)-binding protein (PABP) to protect mRNAs from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved, and relevance had been undetermined. Here, yeast two-hybrid domain mapping followed by other methods identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and LARP4B) as directly binding RACK1 region 200-317.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!