Microplastics in composts, digestates, and food wastes: A review.

J Environ Qual

Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA.

Published: March 2023

Diverting food waste from landfills to composting or anaerobic digestion can reduce greenhouse gas emissions, enable the recovery of energy in usable forms, and create nutrient-rich soil amendments. However, many food waste streams are mixed with plastic packaging, raising concerns that food waste-derived composts and digestates may inadvertently introduce microplastics into agricultural soils. Research on the occurrence of microplastics in food waste-derived soil amendments is in an early phase and the relative importance of this potential pathway of microplastics to agricultural soils needs further clarification. In this paper, we review what is known and what is not known about the abundance of microplastics in composts, digestates, and food wastes and their effects on agricultural soils. Additionally, we highlight future research needs and suggest ways to harmonize microplastic abundance and ecotoxicity studies with the design of related policies. This review is novel in that it focuses on quantitative measures of microplastics in composts, digestates, and food wastes and discusses limitations of existing methods and implications for policy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20450DOI Listing

Publication Analysis

Top Keywords

composts digestates
16
microplastics composts
12
digestates food
12
food wastes
12
agricultural soils
12
food waste
8
soil amendments
8
food waste-derived
8
microplastics agricultural
8
food
7

Similar Publications

Suppression of carbon footprint through the CO-assisted pyrolysis of livestock waste.

Sci Total Environ

January 2025

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Improper management of biogas residue (BR) can reduce sustainability in the food waste treatment industry. To address this issue, a comprehensive evaluation framework, based on emergy analysis, carbon emissions and economic analysis, is proposed in this study, to explore how different BR disposal practices affect the comprehensive performance of the industry. A food waste treatment plant in Henan Province, China (anaerobic digestion (AD) + BR landfilling: Scenario 1 [S1]), and two alternative scenarios (S2: AD + BR incineration; S3: AD + BR composting) are investigated as a case study.

View Article and Find Full Text PDF

Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities.

Front Microbiol

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.

Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.

View Article and Find Full Text PDF

This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!