A reliable and high throughput HPLC-HRMS method for the rapid screening of β-thalassemia and hemoglobinopathy in dried blood spots.

Clin Chem Lab Med

Center for Clinical Molecular Medicine & Newborn Screening, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, P.R. China.

Published: May 2023

Objectives: Traditional methods for β-thalassemia screening usually rely on the structural integrity of hemoglobin (Hb), which can be affected by the hemolysis of red blood cells and Hb degradation. Here, we aim to develop a reliable and high throughput method for rapid detection of β-thalassemia using dried blood spots (DBS).

Methods: Hb components were extracted from a disc (3.2 mm diameter) punched from the DBS samples and digested by trypsin to produce a series of Hb-specific peptides. An analytical system combining high-resolution mass spectrometry and high-performance liquid chromatography was used for biomarker selection. The selected marker peptides were used to calculate delta/beta (δ/β) and beta-mutated/beta (β/β) globin ratios for disease evaluation.

Results: Totally, 699 patients and 629 normal individuals, aged 3 days to 89 years, were recruited for method construction. Method assessment showed both the inter-assay and intra-assay relative standard deviation values were less than 10.8%, and the limits of quantitation for the proteo-specific peptides were quite low (1.0-5.0 μg/L). No appreciable matrix effects or carryover rates were observed. The extraction recoveries ranged from 93.8 to 128.7%, and the method was shown to be stable even when the samples were stored for 24 days. Prospective applications of this method in 909 participants also indicated good performance with a sensitivity of 100% and a specificity of 99.6%.

Conclusions: We have developed a fast, high throughput and reliable method for screening of β-thalassemia and hemoglobinopathy in children and adults, which is expected to be used as a first-line screening assay.

Download full-text PDF

Source
http://dx.doi.org/10.1515/cclm-2022-0706DOI Listing

Publication Analysis

Top Keywords

high throughput
12
reliable high
8
method rapid
8
screening β-thalassemia
8
β-thalassemia hemoglobinopathy
8
dried blood
8
blood spots
8
method
7
throughput hplc-hrms
4
hplc-hrms method
4

Similar Publications

Analysis of Urinary Metanephrines Using Liquid Chromatography Tandem Mass Spectrometry.

Methods Mol Biol

January 2025

Analytic Biochemistry, Calculi and Manual Chemistry, Mass Spectrometry, ARUP Laboratories, Inc., Salt Lake City, UT, USA.

Metanephrines (metanephrine [MN] and normetanephrine [NMN]) are O-methylated metabolites derived from the catecholamines, epinephrine, and norepinephrine, respectively. High concentrations of metanephrines have been observed in individuals with pheochromocytoma, a neuroendocrine tumor. Measurement of metanephrines in urine is used to screen for the tumor.

View Article and Find Full Text PDF

UHPLC-TIMS-PASEF-MS for Lipidomics: From Theory to Practice.

Methods Mol Biol

January 2025

Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.

Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.

View Article and Find Full Text PDF

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.

View Article and Find Full Text PDF

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!