Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the titin nanobody toolbox, recognising specific domains of the two titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886278PMC
http://dx.doi.org/10.7554/eLife.79344DOI Listing

Publication Analysis

Top Keywords

dna-paint super-resolution
8
flight muscles
8
titin homologs
8
titin
6
nanobodies combined
4
combined dna-paint
4
super-resolution reveal
4
reveal staggered
4
staggered titin
4
titin nanoarchitecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!