Introduction: The 2016 World Health Organization Classification (WHO) of Tumors of the Central Nervous System (CNS) represented a major change. It recommended an "integrated diagnosis" comprising histologic and molecular information facilitating a more precise diagnosis of specific CNS tumors. Its goal was to provide greater diagnostic precision and reproducibility resulting in more clinical relevance and predictive value, ultimately leading to better patient care. Advances in molecular classification, mostly resulting from DNA methylation array profiling of CNS tumors, were occurring at a very rapid pace and required more rapid integration into clinical practice.
Methods: cIMPACT-NOW updates and other recent papers plus salient features of 2021 WHO CNS5 in this comprehensive write-up were reviewed.
Results: CNS tumor classification needs to be updated at a rapid pace and mechanisms put into place to guide diagnosticians and clinicians in the interim period if major changes in the classification of tumor types came to light. Recognizing the need to integrate these into clinical practice more rapidly and without inordinate delay, the International Society of Neuropathology (ISN) 2016 sponsored an initiative called cIMPACT-NOW.
Discussion And/or Conclusion: Goal of cIMPACT-NOW was to provide clarification regarding contentious issues arising in the wake of the 2016 WHO CNS update as well as report new advancements in molecular classification of CNS tumors and new tumor entities emerging as a result of these advancements. cIMPACT-NOW updates: It thus laid the foundation for the 5th edition of the WHO Classification of CNS tumors (2021 WHO CNS 5). We have discussed cIMPACT updates in detail in this review. In addition, molecular diagnostics including DNA methylation-based classification of CNS tumors and the practical use of molecular classification in the prognostication and treatment of CNS tumors is discussed. Finally, the salient features of the new CNS tumor classification are summarized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833325 | PMC |
http://dx.doi.org/10.2147/IJGM.S394872 | DOI Listing |
Sci Rep
December 2024
Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.
Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.
View Article and Find Full Text PDFNat Commun
December 2024
Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis.
View Article and Find Full Text PDFRadiat Oncol
December 2024
Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
Background And Purpose: Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for treatment modifications, potentially improving outcomes. While previous studies showed that adding radiomics or Deep Learning (DL) features to clinical features increased Local Control (LC) prediction accuracy, their combined potential to predict LC remains unexplored. We examined whether a model using a combination of radiomics, DL and clinical features achieves better accuracy than models using only a subset of these features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!