Autism spectrum disorder is the most used umbrella term for a myriad of neuro-degenerative/developmental conditions typified by inappropriate social behavior, lack of communication/comprehension skills, and restricted mental and emotional maturity. The intriguing factor of this disorder is attributed to the fact that it can be detected only by close monitoring of developmental milestones after childbirth. Moreover, the exact causes for the occurrence of this neurodevelopmental condition are still unknown. Besides, autism is prevalent across individuals irrespective of ethnicity, genetic/familial history, and economic/educational background. Although research suggests that autism is genetic in nature and early detection of this disorder can greatly enhance the independent lifestyle and societal adaptability of affected individuals, there is still a great dearth of information to support the statement of proven facts and figures. This research work places emphasis on the application of automated machine learning incorporated with feature ranking techniques to generate significant feature signatures for the early detection of autism. Publicly available datasets based on the Q-chat scores of individuals across diverse age groups-toddlers, children, adolescents, and adults have been employed in this study. A machine learning framework based on automated hyperparameter optimization is proposed in this work to rank the potential nonclinical markers for autism. Moreover, this study aimed at ranking the AutoML models based on Mathew's correlation coefficient and balanced accuracy via which nonclinical markers were identified from these datasets. Besides, the feature signatures and their significance in distinguishing between classes are being reported for the first time in autism detection. The proposed framework yielded ∼90% MCC and ∼95% balanced accuracy across all four age groups of autism datasets. Deep learning approaches have yielded a maximum of 92.7% accuracy on the same datasets but are limited in their ability to extract significant markers, have not reported on MCC for unbalanced data, and cannot adapt automatically to new data entries. However, AutoML approaches are more flexible, easier to implement, and provide automated optimization, thereby yielding the highest accuracy with minimal user intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833925 | PMC |
http://dx.doi.org/10.1155/2023/6330002 | DOI Listing |
Sci Data
December 2024
Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.
In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.
View Article and Find Full Text PDFBMC Med Educ
December 2024
Department of Orthopedics, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, 151203, India.
Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.
View Article and Find Full Text PDFBMC Public Health
December 2024
Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.
View Article and Find Full Text PDFAcad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!