Background And Aims: Elevated lipoprotein (a) (Lp(a)) and low-density lipoprotein cholesterol levels (LDL-C) are significant residual risk factors for cardiovascular events. Treatment with protein convertase subtilisin kexin type 9 (PCSK9) inhibitors reduces the levels of both. Less is known about effects of PCSK9 inhibitors on functional and morphological properties of the arterial wall. The aim of the present study was to determine whether other factors besides decreased LDL-C and Lp(a) are associated with functional (flow-mediated dilation [FMD]) and morphological (carotid intima-media thickness [c-IMT], pulse-wave velocity [PWV]) changes of the arterial wall properties in patients with coronary artery disease (CAD) treated with alirocumab and evolocumab.
Methods: One hundred patients with CAD after myocardial infarction before 55 years and with high Lp(a) were randomised to lipid-lowering therapies without PCSK9 inhibitors (control; N = 31), or with alirocumab 150 mg SC (N = 35) or evolocumab 140 mg SC (N = 34), every 2 weeks. All patients underwent blood sampling for biochemical analyses and ultrasound measurements for FMD, c-IMT and PWV.
Results: There were no significant changes in FMD for the control (10.7% ± 6.6%-11.1% ± 4.4%, p = 0.716) and alirocumab (10.7% ± 5.9%-11.2% ± 5.3%, p = 0.547) groups, while evolocumab promoted significant increase (11.2% ± 6.8%-14.1% ± 6.6%, p < 0.0001). Only in non-smokers and non-diabetics significant improvements in FMD (p < 0.0001) after treatment with PCSK9 inhibitors were observed.
Conclusion: These data show that for patients with CAD and high Lp(a) levels, beneficial effects of PCSK9 inhibitors on the arterial wall properties can be attenuated by specific risk factors, such as smoking and diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833244 | PMC |
http://dx.doi.org/10.1016/j.athplu.2022.07.001 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFInt Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
Objective: Recent studies have indicated a close relationship between intracranial arterial stenosis and white matter hyperintensities (WMHs), but few have reported on the correlation between the characteristics of intracranial arterial wall plaques and WMHs. The aim of this study was to comprehensively assess the correlation between intracranial atherosclerosis plaques and WMHs using 3.0T high-resolution magnetic resonance imaging (HR-MRI).
View Article and Find Full Text PDFInt J Med Microbiol
January 2025
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!