Telomere-to-telomere genome assembly of bitter melon ( L. var. Ser.) reveals fruit development, composition and ripening genetic characteristics.

Hortic Res

Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China.

Published: October 2022

L. var. Ser. (Mca), known as bitter gourd or bitter melon, is a variety with medicinal value and belongs to the Cucurbitaceae family. In view of the lack of genomic information on bitter gourd and other species and to promote Mca genomic research, we assembled a 295.6-Mb telomere-to-telomere (T2T) high-quality Mca genome with six gap-free chromosomes after Hi-C correction. This genome is anchored to 11 chromosomes, which is consistent with the karyotype information, and comprises 98 contigs (N50 of 25.4 Mb) and 95 scaffolds (N50 of 25.4 Mb). The Mca genome harbors 19 895 protein-coding genes, of which 45.59% constitute predicted repeat sequences. Synteny analysis revealed variations involved in fruit quality during the divergence of bitter gourd. In addition, assay for transposase-accessible chromatin by high-throughput sequencing and metabolic analysis showed that momordicosides and other substances are characteristic of Mca fruit pulp. A combined transcriptomic and metabolomic analysis revealed the mechanisms of pigment accumulation and cucurbitacin biosynthesis in Mca fruit peels, providing fundamental molecular information for further research on Mca fruit ripening. This report provides a new genetic resource for genomic studies and contributes additional insights into Cucurbitaceae phylogeny.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832870PMC
http://dx.doi.org/10.1093/hr/uhac228DOI Listing

Publication Analysis

Top Keywords

bitter gourd
12
mca fruit
12
bitter melon
8
var ser
8
mca genome
8
n50 254 mb
8
analysis revealed
8
mca
7
bitter
5
fruit
5

Similar Publications

Diabetes mellitus (DM) is recognized and classified as a group of conditions marked by persistent high blood glucose levels. It is also an inflammatory condition that may influence concurrent disease states, including Coronavirus Disease 2019 (COVID-19). Currently, no effective drug has been found to treat COVID-19, especially in DM patients.

View Article and Find Full Text PDF

Background And Objective: Leptospirosis is a disease caused by pathogenic prevalent in tropical countries like the Philippines. Some studies have shown that the role of currently used antibiotics for leptospirosis is unclear since trials have found no significant benefit to patient outcomes compared to placebo. This signals the need for alternative therapies, such as herbal medicines, which may provide effective therapeutic regimens in treating this infection.

View Article and Find Full Text PDF

Cisplatin is an antineoplastic drug that exhibits toxicity dependent on dosage and has adverse reproductive effects. (Bitter melon) is a natural vegetable plant; its active ingredients possess antioxidant, apoptotic, antiproliferative, hypoglycemic, and other therapeutic properties. This study evaluates the effect of the administration of bitter melon extract, cisplatin, and cisplatin/bitter melon cotreatment on liver and kidney functions, serum and testicular oxidative status, testis histology, and sperm parameters.

View Article and Find Full Text PDF

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

The objective of this study was the develop of fortified cookies enriched with oats flour and bitter gourd powder and monitoring the effects of these enrichments on the physicochemical, antioxidant, antimicrobial, and sensory attributes. This study was subjected to four treatments: control (0% oats flour and bitter gourd powder), T1 (10% oats flour), T2 (3% bitter gourd powder), and T3 (7% oats flour and 3% bitter gourd powder). Various physical properties of the cookies, including weight, thickness, diameter, spread ratio, baking loss, pH, and color values (L*, a*, and b*), were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!