Classification of Ultrafine Particles Using a Novel 3D-Printed Hydrocyclone with an Arc Inlet: Experiment and CFD Modeling.

ACS Omega

National Engineering Research Centre for Integrated Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China.

Published: January 2023

Ultrafine particle classification can be realized using hydrocyclones with novel structures to overcome the limitations of conventional hydrocyclones with tangential inlets or cone structures. Herein, the hydrocyclones with different inlet structures and cone angles were investigated for classifying ultrafine particles. Computational fluid dynamics (CFD) simulations were performed using the Eulerian-Eulerian method, and ultrafine MnO powder was used as a case study. The simulation results show a fine particle (≤5 μm) removal efficiency of 0.89 and coarse particle (>5 μm) recovery efficiency of 0.99 for a hydrocyclone design combining an arc inlet and a 30° cone angle under a solid concentration of 2.5 wt %. Dynamic analysis indicated that the novel arc inlet provided a preclassification effect to reduce the misplacement of fine/coarse particles, which cannot be provided by conventional tangential or involute inlets. Furthermore, the proposed design afforded comprehensive improvement in the flow field by regulating the residence time and radial acceleration. Subsequently, a novel hydrocyclone with an arc inlet and 30° cone angle was manufactured using the three-dimensional (3D) printing technology. Experiments were conducted for classifying ultrafine MnO particles using the novel 3D-printed hydrocyclone and conventional hydrocyclone. The results demonstrate that the classification performance of the 3D-printed hydrocyclone was superior to that of the conventional one, in particular, the removal efficiency of fine particles from 0.719 to 0.930 using a 10 wt % feed slurry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835633PMC
http://dx.doi.org/10.1021/acsomega.2c06383DOI Listing

Publication Analysis

Top Keywords

arc inlet
16
3d-printed hydrocyclone
12
ultrafine particles
8
particles novel
8
novel 3d-printed
8
hydrocyclone arc
8
classifying ultrafine
8
ultrafine mno
8
removal efficiency
8
inlet 30°
8

Similar Publications

Purpose: We presented the experience of a tertiary care center for maternal and fetal diseases and assessed the findings fetuses with double-inlet left ventricle (DILV) regarding fetal echocardiography, prenatal course including fetal growth and death, and postnatal outcome.

Methods: In this retrospective study, patients diagnosed with DILV via prenatal ultrasound in the maternal-fetal medicine department between 2015 and 2023 were included to evaluate important aspects of prenatal diagnosis and course, as well as postnatal management and outcome.

Results: There were 33 DILV cases prenatally diagnosed and postnatally confirmed.

View Article and Find Full Text PDF

Influence of plasma-enhanced combustion on RBCC engine using URANS.

Sci Rep

December 2024

State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.

Article Synopsis
  • - The RBCC engine is a promising propulsion system for launching vehicles into orbit, but maintaining efficient combustion during mode transitions is challenging due to low incoming flow temperatures.
  • - New research proposes using plasma combustion support to enhance RBCC engine performance during these mode transitions, particularly from ejector/ramjet to ramjet/scramjet modes.
  • - Numerical simulations indicate that adding arc plasma increases heat release and thrust while reducing aerodynamic drag during transitions, and it also stabilizes thrust fluctuations and decreases transition times at high Mach numbers.
View Article and Find Full Text PDF

Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system's performance from both thermodynamic and exergoeconomic perspectives.

View Article and Find Full Text PDF

The uniformity of hot air flow inside the airflow dryer not only affects the moisture distribution at the outlet, but also affects the quality of the product. Based on the guide plate structure of the SH23A airflow tobacco dryer, a gradient curved guide plate dryer is designed, and the flow field distribution of the dryer is numerically investigated under different flow distribution conditions at the hot air inlet and flue gas inlet. The results show that the airflow uniformity is affected by the flow distribution at the inlet of the heated air and the inlet of the cigarette smoke, the structure of the guide plate, etc.

View Article and Find Full Text PDF

The growth parameters of the underground coal gasification (UCG) combustion cavity are important for the regulation of its gasification process. The irregular cavities formed in the early stages of ignition can affect the stability of the gasification process. In this study, a heat-solid coupling model is used to determine the combustion cavity boundary at the early stage of coal seam ignition to simulate the movement of the combustion cavity boundary by indirectly inheriting the coal seam temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!