AI Article Synopsis

  • Developed a method for Friedel-Crafts acylation using metal triflates in deep eutectic solvents, achieving good to excellent yields of ketone products.
  • Conducted density functional theory calculations to understand the influence of different metals on the formation of active intermediate acylium triflate and the acidic conditions.
  • Showed that metal triflates in deep eutectic solvents can be recovered and reused with minimal loss of catalytic activity.

Article Abstract

In this paper, we develop a method for Friedel-Crafts acylation using metal triflate in deep eutectic solvents. Various metal triflates were tested and provided good to excellent yields of corresponding ketone products. The density functional theory calculation revealed the metal effects on the formation of active intermediate acylium triflate as well as the acidic condition. The metal triflate in the deep eutectic solvent can be recovered and reused with a little loss in the catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835085PMC
http://dx.doi.org/10.1021/acsomega.2c03944DOI Listing

Publication Analysis

Top Keywords

metal triflate
12
triflate deep
12
deep eutectic
12
friedel-crafts acylation
8
acylation metal
8
eutectic solvents
8
metal
5
mechanism friedel-crafts
4
triflate
4
solvents experimental
4

Similar Publications

Inner Helmholtz layer control through co-solvent strategies for high-performance copper hexacyanoferrate//zinc battery.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.

View Article and Find Full Text PDF

An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.

View Article and Find Full Text PDF

Development of metal-free conversion of naturally abundant phenols and anilines to the corresponding olefins remains a formidable challenge. The current state of the art relies on the TM-catalyzed Heck coupling of activated phenols (triflates, tosylates, and more) with the olefins. While these advancements are promising, the reaction suffers from branch vs linear selectivity and requires an expensive TM-ligand combination, hazardous organotin reagents, and very high reaction temperature.

View Article and Find Full Text PDF

Distinctive, green, innovative, and well-organized photoinduced (metal- or photocatalyst-free) regioselective decarbonylative and decarboxylative C-O bond functionalization protocols to access aryl 2-aminobenzoates and 2-substituted benzoxazinone derivatives in excellent yields have been devised. These are achieved through the chemoselective scission of isatoic anhydride with ketones, diaryliodonium triflate, nitroalkene, phthalazinone, and phenol derivatives, which, in turn, served as the representative "electrophilic and nucleophilic" coupling partners. Control experiments and DFT calculations reveal that electrophilic radical-bearing coupling partners specifically follow the decarbonylation pathway, while nucleophilic radical-bearing conjugates facilitate the decarboxylation process.

View Article and Find Full Text PDF

Mono-β-diketonate compounds have been fleetingly observed in base metal catalyzed reactions, which are of current interest as alternatives to precious metal catalyzed reactions. Their isolation has been challenging due to synthetic and structural limitations of acac-type ligands, leading to the development of a related NacNac ligand platform. Herein we report the synthesis of a β-diketone capable of kinetically stabilizing relevant catalytic intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!