Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids.

ACS Omega

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China.

Published: January 2023

AI Article Synopsis

  • Zinc (Zn) alloys are being explored as potential degradable biomaterials, but their corrosion in the gastrointestinal tract hasn't been thoroughly studied.
  • This research examined how the enzymes pepsin and pancreatin affect pure Zn's degradation through electrochemical tests and immersion studies.
  • The results indicated that while enzymes reduced general degradation rates, localized corrosion still occurred due to incomplete protection from pepsin, and pancreatin mainly offered initial corrosion protection during immersion.

Article Abstract

Zinc (Zn) alloys are being developed as the degradable biomaterial. However, the corrosion mechanism of Zn in the gastrointestinal environment is seldom investigated and needs to be addressed. In this study, the impacts of enzymes on the degradation of pure Zn via electrochemical measurements and immersion were investigated. Pepsin and pancreatin affected the degradation of pure Zn. In contrast with the solutions without enzymes, the degradation rates declined with the addition of enzymes in solutions. However, localized corrosion was observed because the adsorption of pepsin was not a perfect barrier to prevent corrosion. The adsorbed pancreatin protected the samples from corrosion mainly at the initial stage of immersion. With immersion in the simulated intestinal fluid, adsorption and desorption of pancreatin occurred simultaneously on the sample surface. These findings allow the development of Zn alloy-implanted devices for the digestive tract as well as the understanding of the Zn corrosion mechanism in the gastrointestinal environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835524PMC
http://dx.doi.org/10.1021/acsomega.2c06752DOI Listing

Publication Analysis

Top Keywords

corrosion mechanism
8
mechanism gastrointestinal
8
gastrointestinal environment
8
enzymes degradation
8
degradation pure
8
corrosion
5
influence enzymes
4
enzymes vitro
4
degradation
4
vitro degradation
4

Similar Publications

Cuprous oxide (CuO) thin films were chemically deposited from a solution onto GaAs(100) and (111) substrates using a simple three-component solution at near-ambient temperatures (10-60 °C). Interestingly, a similar deposition onto various other substrates including Si(100), Si(111), glass, fluorine-doped tin oxide, InP, and quartz resulted in no film formation. Films deposited on both GaAs(100) and (111) were found alongside substantial etching of the substrates.

View Article and Find Full Text PDF

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

Self-corrosion and low practical voltage of anodes severely limit the usage of Mg-air batteries. Although many elements, including indium (In), have been used to enhance the discharge characteristics of Mg anodes, unclear mechanism of the action of a single element and lack of research on binary alloys as anodes have restricted the development of Mg-air batteries. Herein, Mg-In ( = 0.

View Article and Find Full Text PDF

Background: Dual mobility (DM) implants in total hip arthroplasty provide excellent range of motion with low dislocation rates. A complication of this design is intraprosthetic dislocation (IPD), where the polyethylene (PE) liner dissociates from the femoral head. In older designs, IPD occurred due to a small head size and late PE wear with head-capture-mechanism failure.

View Article and Find Full Text PDF

A bimetallic organic framework (CuNi-MOF) was synthesized as a corrosion inhibitor using the solvothermal method. The effectiveness of the inhibitor in corrosion prevention of AISI 304 and 316 in 1N hydrochloric acid solution at room temperature was evaluated using weight loss measurements, electrochemical methods, and surface characterization techniques. The formation of CuNi-MOF protective layer on the stainless-steel surface was confirmed through Field Emission Scanning Electron Microscopes (FESEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffraction (XRD) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!