An atmospheric pressure plasma jet (APPJ) is being advanced as an alternative radiation type that offers excellent efficacy in an array of medical applications against specific biological targets such as DNA. This work explores the possibility of implementing DNA and its damage as a probe for specific plasma diagnostics such as reactive plasma species formation and transient local heating. We analyzed both APPJ characteristics based on the detection of plasma-induced strand breaks and DNA denaturation. Further, we implemented a machine learning model based on artificial neural networks to predict the type and extent of DNA damage for a given combination of APPJ parameter values. This methodology is an important step toward deciphering and explaining the potential adverse effects of APPJ on biological samples of any prospective interest in medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835636PMC
http://dx.doi.org/10.1021/acsomega.2c07262DOI Listing

Publication Analysis

Top Keywords

strand breaks
8
atmospheric pressure
8
pressure plasma
8
dna damage
8
dna
5
dna strand
4
breaks denaturation
4
denaturation probes
4
probes chemical
4
chemical reactivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!