Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: This study compares two distinct approaches, pooling forecasts from single indicator MIDAS models versus pooling information from indicators into factor MIDAS models, for short-term Singapore GDP growth forecasting with a large ragged-edge mixed frequency dataset. We consider various popular weighting schemes in the literature when conducting forecast pooling. As for factor extraction, both the conventional dynamic factor model and the three-pass regression filter approach are considered. We investigate the relative predictive performance of all methods in a pseudo-out-of-sample forecasting exercise from 2007Q4 to 2020Q3. In the stable growth non-crisis period, no substantial difference in predictive performance is found across forecast models. In comparison, we find information pooling tends to dominate both the quarterly autoregressive benchmark model and the forecast pooling strategy particularly during the Global Financial Crisis.
Supplementary Information: The online version contains supplementary material available at 10.1007/s00181-022-02356-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826763 | PMC |
http://dx.doi.org/10.1007/s00181-022-02356-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!