Background And Aims: Osteopontin (OPN) is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the function of OPN in NAFLD is still inconclusive. Therefore, our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms.
Methods: We analyzed the expression change of OPN in NAFLD by bioinformatic analysis, qRT-PCR, western blotting and immunofluorescence staining. To clarify the role of OPN in NAFLD, the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting.
Results: was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data, and the high expression of OPN was related with disease stage and progression. OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse, and in HepG2 cells treated with oleic acid (OA). Furthermore, the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization. Mechanistically, OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1 (STAT1) signaling pathway in HepG2 cells, and consequently HepG2 cells secreted more high-mobility group box 1 (HMGB1), thereby promoting macrophage M1 polarization.
Conclusions: OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817049 | PMC |
http://dx.doi.org/10.14218/JCTH.2021.00474 | DOI Listing |
PLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
This narrative review intends to provide thorough information on the anti-inflammatory activities of plants, the largest genus of the family Zingiberaceae. The articles were searched on the PubMed database using 'Alpinia AND anti-inflammatory activity' as the keywords, filtered to articles published from 2020 to 2024 and free full-text. Of the approximately 248 members of the genus plants, the most commonly studied for their anti-inflammatory activities are , , , and .
View Article and Find Full Text PDFHepat Oncol
December 2024
Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
The aim of this study was to assess the utility of weighted amide proton transfer (APT) MRI in three different rodent models of hepatocellular carcinoma (HCC). APT MRI was evaluated in models of diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft and human HepG2 ectopic xenograft. All models of HCC showed a higher APT signal over the surrounding normal tissues.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China. Electronic address:
Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry.
View Article and Find Full Text PDFInt J Pharm
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China. Electronic address:
Hepatocellular carcinoma is one of the leading causes of cancer deaths globally and a key hindrance to extending life expectancy. Celastrol (CEL) demonstrates excellent antitumor activity, but faces challenges like low solubility and a narrow therapeutic window, limiting its clinical application. To address these limitations, drug combinations and nano-delivery systems have emerged as effective solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!