Catanionic Vesicles as a Facile Scaffold to Display Natural N-Glycan Ligands for Probing Multivalent Carbohydrate-Lectin Interactions.

Bioconjug Chem

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States.

Published: February 2023

Multivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands. Hydrophobic insertion of lipidated N-glycans into the catanionic vesicle bilayer was optimized to allow for high-density display of structurally diverse N-glycans on the outer membrane leaflet. In an enzyme-linked competitive lectin-binding assay, the N-glycan-coated vesicles demonstrated a clear clustering glycoside effect, with significantly enhanced affinity for the corresponding lectins including agglutinin (), (), and human galectin-3, in comparison with their respective natural N-glycan ligands. Our results showed that relatively low density of high-mannose and sialylated complex type N-glycans gave the maximal clustering effect for binding to ConA and SNA, respectively, while relatively high-density display of the asialylated complex type N-glycan provided maximal clustering effects for binding to human galectin 3. Moreover, we also observed a macromolecular crowding effect on the binding of ConA to high-mannose N-glycans when catanionic vesicles bearing mixed high-mannose and complex-type N-glycans were used. The N-glycan-coated catanionic vesicles are stable and easy to formulate with varied density of ligands, which could serve as a feasible vehicle for drug delivery and as potent inhibitors for intervening protein-carbohydrate interactions implicated in disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349922PMC
http://dx.doi.org/10.1021/acs.bioconjchem.2c00560DOI Listing

Publication Analysis

Top Keywords

catanionic vesicles
16
natural n-glycan
8
n-glycan ligands
8
vesicles stable
8
n-glycans catanionic
8
high-density display
8
complex type
8
maximal clustering
8
binding cona
8
n-glycans
6

Similar Publications

Cascade Synthesis in Water: Michael Addition/Hemiketalization/Retro-Claisen Fragmentation Catalyzed by CatAnionic Vesicular Nanoreactor from Dithiocarbamate.

Chem Asian J

October 2024

Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

N,N-didodecylammonium N,N-didodecyldithiocarbamate (AmDTC-CC) underwent self-assembly to form a CatAnionic vesicular nanoreactor in water. AmDTC-CC can be readily prepared by condensation between N,N-didodecylamine and carbon disulfide. Previously, the cascade Michael addition/hemiketalization/retro-Claisen fragmentation was reported, but it required petroleum-based organic solvents as reaction media.

View Article and Find Full Text PDF

Hydrated dispersions containing equimolar mixtures of cationic and anionic amphiphiles, referred to as catanionic systems, exhibit synergistic physicochemical properties, and mixing single-chain cationic and anionic lipids can lead to the spontaneous formation of vesicles as well as other phase structures. In the present work, we have characterized two catanionic systems prepared by mixing -acyltaurines (NATs) and sarcosine alkyl esters (SAEs) bearing 11 and 12 C atoms in the acyl/alkyl chains. Turbidimetric and isothermal titration calorimetric studies revealed that both NATs form equimolar complexes with SAEs having matching acyl/alkyl chains.

View Article and Find Full Text PDF

Vesicle-micelle transitions driven by ROS, light and heat.

Nanoscale

September 2024

Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.

Vesicles are self-assembled nanocontainers (size ∼100 nm) in which solutes such as drugs can be encapsulated. There is great interest in triggering vesicle-micelle transitions (VMTs) because such transitions will result in the release of encapsulated solute. Here, we focus on (ROS) as a trigger for VMTs.

View Article and Find Full Text PDF

Amphiphiles are among the most extensively studied building blocks that self-assemble into cell-like compartments. Most literature suggested that the building blocks/amphiphiles of early Earth (fatty acid-based membrane) were much simpler than today's phospholipids. To establish the bridge between the prebiotic fatty acid era and the modern phospholipid era, the investigation and characterization of alternate building blocks that form protocellular membranes are necessary.

View Article and Find Full Text PDF

Towards compartmentalized micelles: Mixed perfluorinated and hydrogenated ionic surfactants in aqueous solution.

J Colloid Interface Sci

January 2024

Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa, 1049-001 Lisbon, Portugal. Electronic address:

Hypothesis: Aqueous solutions of mixtures of hydrogenated and perfluorinated ionic surfactants are known to display anomalous aggregation behavior due to the mutual phobicity between hydrogenated and perfluorinated chains. Despite all efforts, different experimental limitations prevented so far a definite interpretation of the existing experimental results: both intermicellar and intramicellar segregation remain acceptable possibilities.

Method: The potential for segregation of mixtures of fluorinated and hydrogenated ionic surfactants in water was assessed using atomistic molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!