Insulin release is tightly controlled by glucose-stimulated calcium (GSCa) through hitherto equivocal pathways. This study investigates TRPC3, a non-selective cation channel, as a critical regulator of insulin secretion and glucose control. TRPC3's involvement in glucose-stimulated insulin secretion (GSIS) is studied in human and animal islets. TRPC3-dependent in vivo insulin secretion is investigated using pharmacological tools and Trpc3 mice. TRPC3's involvement in islet glucose uptake and GSCa is explored using fluorescent glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose and calcium imaging. TRPC3 modulation by a small-molecule activator, GSK1702934A, is evaluated in type 2 diabetic mice. TRPC3 is functionally expressed in human and mouse islet beta cells. TRPC3-controlled insulin secretion is K -independent and primarily mediated by diacylglycerol channel regulation of the cytosolic calcium oscillations following glucose stimulation. Conversely, glucose uptake in islets is independent of TRPC3. TRPC3 pharmacologic inhibition and knockout in mice lead to defective insulin secretion and glucose intolerance. Subsequently, TRPC3 activation through targeted small-molecule enhances insulin secretion and alleviates diabetes hallmarks in animals. This study imputes a function for TRPC3 at the onset of GSIS. These insights strengthen one's knowledge of insulin secretion physiology and set forth the TRPC3 channel as an appealing candidate for drug development in the treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951314 | PMC |
http://dx.doi.org/10.1002/advs.202204846 | DOI Listing |
Lab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Gastroenterology, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China.
In this article, we review the study by Jin , which examined the role of intestinal glucagon-like peptide-1 (GLP-1) in counterregulatory responses to hypoglycemia in patients with type 1 diabetes mellitus (T1DM). With the global rise of T1DM, there is an increased burden on society and healthcare systems. Due to insulin therapy and islet dysfunction, T1DM patients are highly vulnerable to severe hypoglycemia, a leading cause of mortality.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Department of Agricultural Science, Graduate School of Sustainability Science.
FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:
Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
January 2025
Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
In East Asians, type 2 diabetes mellitus (T2DM) is primarily characterized by significant defects in insulin secretion and comparatively low insulin resistance. Recently, the prevalence of T2DM has rapidly increased in East Asian countries, including Korea, occurring concurrently with rising obesity rates. This trend has led to an increase in the average body mass index among East Asian T2DM patients, highlighting the influence of insulin resistance in the development of T2DM within this group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!