AI Article Synopsis

  • The study explores the thermoelectric properties of Ag-based materials LaAgOS and LaAgOSe, which show promise for efficient thermoelectric applications due to their favorable characteristics.
  • Both LaAgOS and LaAgOSe are identified as direct semiconductors with wide bandgaps, leading to unique conduction properties that enhance thermoelectric performance.
  • Key findings suggest that the p-type LaAgOX exhibits high thermoelectric performance due to a high Seebeck coefficient and low thermal conductivity, with optimal performance rankings for n-type and p-type materials at elevated temperatures.

Article Abstract

Inspired by the experimental achievement of layered LaCuOX (X = S, Se) with superior thermoelectric (TE) performance, the TE properties of Ag-based isomorphic LaAgOX are systemically investigated by the first-principles calculation. The LaAgOS and LaAgOSe are direct semiconductors with wide bandgaps of ≈2.50 and ≈2.35 eV. Essential four-phonon and multiple carrier scattering mechanisms are considered in phonon and electronic transport calculations to improve the accuracy of the figure-of-merit (ZT). The p-type LaAgOX (X = S, Se) shows excellent TE performance on account of the large Seebeck coefficient originated from the band convergency and low thermal conductivity caused by the strong phonon-phonon scattering. Consequently, the optimal ZTs along the out-of-plane direction decrease in the order of n-type LaAgOSe (≈2.88) > p-type LaAgOSe (≈2.50) > p-type LaAgOS (≈2.42) > n-type LaAgOS (≈2.27) at 700 K, and the optimal ZTs of ≈1.16 and ≈1.29 are achieved for p-type LaAgOS and LaAgOSe at the same temperature. The present work would provide a deep insight into the phonon and electronic transport properties of LaAgOX (X = S, Se), but also could shed light on the way for the rational design of state-of-the-art heteroanionic materials for TE application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202201368DOI Listing

Publication Analysis

Top Keywords

thermoelectric performance
8
four-phonon multiple
8
multiple carrier
8
carrier scattering
8
laagos laagose
8
phonon electronic
8
electronic transport
8
optimal zts
8
p-type laagos
8
theoretical prediction
4

Similar Publications

To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.

View Article and Find Full Text PDF

Four quaternary Zintl phase thermoelectric (TE) materials belonging to the BaEuZnSb ( = 0.02(1), 0.04(1), 0.

View Article and Find Full Text PDF

Computational Model of the Effective Thermal Conductivity of a Bundle of Round Steel Bars.

Materials (Basel)

January 2025

Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.

During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.

View Article and Find Full Text PDF

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!