The design of highly dispersed active sites of hollow materials and unique contact behavior with the components to be catalyzed provide infinite possibilities for exploring the limits of catalyst capacity. In this study, the synthesis strategy of highly open 3-dimensional frame structure Prussian blue analogues (CoFe-PBA) was explored through structure self-transformation, which was jointly guided by template mediated epitaxial growth, restricted assembly and directional assembly. Additionally, good application prospect of CoFe-PBA as combustion catalyst was discussed. The results show that unexpected thermal decomposition behavior can be achieved by limiting AP(ammonium perchlorate) to the framework of CoFe-PBA. The high temperature decomposition stage of AP can be advanced to 283.6 °C and the weight loss rate can reach 390.03% min . In-situ monitoring shows that CoFe-PBA can accelerate the formation of NO and NO . The calculation of reaction kinetics proved that catalytic process was realized by increasing the nucleation factor. On this basis, the catalytic mechanism of CoFe-PBA on the thermal decomposition of AP was discussed, and the possible interaction process between AP and CoFe-PBA during heating was proposed. At the same time, another interesting functional behavior to prevent AP from caking was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202207023DOI Listing

Publication Analysis

Top Keywords

prussian blue
8
thermal decomposition
8
cofe-pba
5
oriented assembled
4
assembled prussian
4
blue analogue
4
analogue framework
4
framework confined
4
confined catalytic
4
decomposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!