A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The excitable fluid mosaic. | LitMetric

The excitable fluid mosaic.

Biochim Biophys Acta Biomembr

Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark. Electronic address:

Published: March 2023

The Fluid Mosaic Model by Singer & Nicolson proposes that biological membranes consist of a fluid lipid layer into which integral proteins are embedded. The lipid membrane acts as a two-dimensional liquid in which the proteins can diffuse and interact. Until today, this view seems very reasonable and is the predominant picture in the literature. However, there exist broad melting transitions in biomembranes some 10-20 degrees below physiological temperatures that reach up to body temperature. Since they are found below body temperature, Singer & Nicolson did not pay any further attention to the melting process. But this is a valid view only as long as nothing happens. The transition temperature can be influenced by membrane tension, pH, ionic strength and other variables. Therefore, it is not generally correct that the physiological temperature is above this transition. The control over the membrane state by changing the intensive variables renders the membrane as a whole excitable. One expects phase behavior and domain formation that leads to protein sorting and changes in membrane function. Thus, the lipids become an active ingredient of the biological membrane. The melting transition affects the elastic constants of the membrane. This allows for the generation of propagating pulses in nerves and the formation of ion-channel-like pores in the lipid membranes. Here we show that on top of the fluid mosaic concept there exists a wealth of excitable phenomena that go beyond the original picture of Singer & Nicolson..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2022.184104DOI Listing

Publication Analysis

Top Keywords

fluid mosaic
12
singer nicolson
12
body temperature
8
membrane
7
excitable fluid
4
mosaic fluid
4
mosaic model
4
model singer
4
nicolson proposes
4
proposes biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!