The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944984 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.102901 | DOI Listing |
Structure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Nephrology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
Background: Immunoglobulin A nephropathy (IgAN) and lupus nephritis (LN) are the most prevalent primary and secondary glomerular diseases, respectively, with several similarities in clinical presentations. Common pathogenic mechanisms in IgAN and LN have been well investigated by previous studies. However, the manifestation mechanism of these two independent diseases carrying distinct immunofluorescent pathological features is still unknown considering the similarities between them.
View Article and Find Full Text PDFCancer Biother Radiopharm
November 2024
Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Methyltransferase-like 3 (METTL3) and HECT and RLD domain containing E3 ubiquitin protein ligase 4 (HERC4) have been studied in the field of oncology; howbeit, their roles and interaction in hepatocellular carcinoma (HCC) await elucidation. Initially, METTL3 and HERC4 expressions in normal and HCC samples were predicted employing the UALCAN database, and the targeting relationship between these two was explored via coimmunoprecipitation assay. Following the quantification on N6-methyladenosine (mA) enrichment, the localization of METTL3 and HERC4 on HCC cells was visualized via immunofluorescence assay.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
Protein Sci
December 2024
Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts, USA.
Homologous to the C-terminus of E6AP (HECT) and RCC1-like domain (RLD)-containing protein 2 (HERC2) is a large, 528 kDa E3 ubiquitin ligase that is associated with cancer, oculocutaneous albanism type 2, Prader-Willi syndrome, and other neurological diseases. HERC2 has been found to contribute to double-stranded DNA break repairs, tumor suppression, maintaining centrosome architecture, and ubiquitylation. The C-terminal portion of the HECT domain (C-lobe) of HERC2 is responsible for transferring ubiquitin to a substrate but the precise function of the other eight domains in HERC2 are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!