Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles.

Chemosphere

Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India. Electronic address:

Published: March 2023

It has been a never-ending quest to design a safe, cost-effective, and environmentally acceptable technology for eliminating contaminants from water and countering antibiotic resistance. Herein, a waste leaf extract from the abundant and renewable plant, Brassica oleracea var. gongylodes, is introduced as a cost-effective and sustainable means to generate gold (Au) and Au@Ag core-shell nanoparticles (NPs). In comparison to the bare Au NPs, bimetallic NPs demonstrated improved catalytic and antibacterial capabilities. The reduction process conforms to the pseudo-first-order kinetic, and apparent rate constant (k) was calculated to be 0.46 min, according to the kinetic analysis. With both microbial pathogens, E. coli (Gram-negative) and B. subtilis (Gram-positive), an increment of Au and Au@Ag NPs lead to a considerable improvement in the zone of clearance. The present outcome is a step forward in the establishment of a viable and cost-effective catalytic and antibacterial platform based on bimetallic NPs that could be generated in an inexpensive and eco-friendly manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137841DOI Listing

Publication Analysis

Top Keywords

au@ag core-shell
8
core-shell nanoparticles
8
bimetallic nps
8
catalytic antibacterial
8
nps
5
catalytic antimicrobial
4
antimicrobial potential
4
potential green
4
green synthesized
4
synthesized au@ag
4

Similar Publications

Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed.

View Article and Find Full Text PDF

In contrast to homogeneous enzyme catalysis, nanozymes are nanosized heterogeneous catalysts that perform reactions on a rigid surface. This fundamental difference between enzymes and nanozymes is often overlooked in kinetic studies and practical applications. In this article, using 14 nanozymes of various compositions (core@shell, metal-organic frameworks, metal, and metal oxide nanoparticles), we systematically demonstrate that nontypical features of nanozymes, such as multiple catalytic activities, chemical transformations, and aggregation, need to be considered in nanozyme catalysis.

View Article and Find Full Text PDF

Tandem neural networks for inverse design can only make single predictions, which limits the diversity of predicted structures. Here, we use conditional variational autoencoder (cVAE) for the inverse design of core-shell nanoparticles. cVAE is a type of generative neural network that generates multiple valid solutions for the same input condition.

View Article and Find Full Text PDF
Article Synopsis
  • - Atomically precise metal nanoclusters (NCs) are interesting for their unique structures and catalytic potential, but they have issues like instability and self-aggregation.
  • - This research presents a method to stabilize metal NCs by anchoring them to a metal oxide matrix, creating a hollow core-shell structure through thermal treatment.
  • - The resulting metal NPs@metal oxide heterostructures show improved catalytic activity and stability for reducing aromatic nitro compounds, suggesting a new approach to utilize the instability of metal NCs in catalysis.
View Article and Find Full Text PDF

We reported the gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized with β-cyclodextrin (β-CD) as versatile nano-agents demonstrated for human urine-based biosensing of cysteamine and catalytic conversion from nitrobenzene (NB) to aniline. First, the hybrid bimetallic nanoparticles, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!