Benzo[a]pyrene toxicokinetics in humans following dietary supplementation with 3,3'-diindolylmethane (DIM) or Brussels sprouts.

Toxicol Appl Pharmacol

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA. Electronic address:

Published: February 2023

AI Article Synopsis

  • The study investigates the effect of Brussels sprouts (BS) and 3,3'-diindolylmethane (DIM) on the metabolism of a known carcinogen, [C]-benzo[a]pyrene (BaP), using ultra-performance liquid chromatography-accelerator mass spectrometry (UPLC-AMS).
  • Volunteers who consumed BS or DIM for a week had lower plasma levels of [C]-BaP and its metabolites after oral micro-dosing, with reductions indicating slower absorption and potentially enhanced clearance.
  • This preliminary research suggests that dietary interventions can influence the toxicokinetics of carcinogens in humans, marking a significant step in understanding how diet may affect cancer risk.

Article Abstract

Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [C]-benzo[a]pyrene ([C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [C]-BaP. Volunteers were dosed with [C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased T and reduced C for [C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced C values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T and the plasma AUC() for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946811PMC
http://dx.doi.org/10.1016/j.taap.2023.116377DOI Listing

Publication Analysis

Top Keywords

dietary supplementation
8
33'-diindolylmethane dim
8
brussels sprouts
8
absorption dietary
8
dietary treatments
8
[c]-bap
7
dietary
5
benzo[a]pyrene toxicokinetics
4
toxicokinetics humans
4
humans dietary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!