The synergistic metabolism by anammox cultures and nitrate-reducers for anaerobic PAH biodegradation is largely unknown, including whether anammox culture and which kind of anammox bacterium can perform nitrogen metabolism in the anaerobic PAH biodegradation processes, the inhibitory effect of PAH on anammox activity and nitrite on PAH-degrading nitrate-reducers activity, and the synergistic metabolic processes. Herein, an anammox culture that can eliminate nitrite accumulation and decrease inorganic carbon emission during anaerobic phenanthrene (a model of PAH in this study) biodegradation, the synergistic mechanism for phenanthrene biodegradation by a nitrate-reducer and such anammox culture, and the inhibition effect of phenanthrene on such anammox culture and nitrite on a phenanthrene-degrading nitrate-reducer were newly discussed. The results showed that nitrite largely accumulated during anaerobic phenanthrene biodegradation (nitrate accumulation is a common phenomenon for the biodegradation of refractory matter, including PAHs, by nitrate-reducers) by a nitrate-reducer, PheN2, which mineralizes phenanthrene to inorganic carbon, and nitrite was verified as an inhibiting factor for further biodegradation. Anaerobic phenanthrene biodegradation rates and nitrite concentrations (0-7 mM) appeared to have a negative linear correlation. The anammox culture that mainly contained Candidatus Kuenenia was newly found to efficiently reduce nitrite accumulation and inorganic carbon emissions and significantly promote biodegradation efficiency by ∼1.94-fold. Our results showed that phenanthrene absorbed in and on anammox cells had a more direct relationship with the inhibitory effect on anammox activity than phenanthrene in the environment, and 15.2 mg/gVSS phenanthrene absorbed in and on the cells (4 mM concentration in the culture) showed nearly complete inhibition of anammox culture in this study. In addition, few (less than 2% abundance) anammox bacteria were found to be enough for the removal of nitrite produced from anaerobic phenanthrene biodegradation. In an ideal world, co-pollutants of ammonia, nitrate, phenanthrene, and nitrite could be converted to nitrogen gas and biomass by the synergistic metabolism of anammox cultures and nitrate reducers. Our study reveals a new synergistic process that may exist in our environments for PAH elimination by an anammox culture and a nitrate-reducer, which provides a new strategy for the bioremediation of PAH-polluted anoxic zones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.119593 | DOI Listing |
Chemosphere
February 2025
School of Infrastructure, Indian Institute of Technology Bhubaneswar, Jatni, Argul, Odisha, 752050, India.
Wastewater treatment processes are continually evolving to meet stringent environmental standards while optimizing energy consumption and operational costs. With significant advantages over more traditional approaches, the anammox process has become a hopeful substitute for nitrogen removal. The objective of this work was to evaluate upflow anaerobic sludge blanket reactor (UASBR), moving bed biofilm reactor (MBBR), and sequential batch reactor (SBR) among diverse reactor configurations, in culturing anammox bacteria and achieving nitrogen removal efficiencies.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Engineering, Hangzhou Normal University, Hangzhou 310018, China. Electronic address:
Environ Pollut
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China. Electronic address:
BMC Microbiol
November 2024
Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Background: The increasing use of nanoparticles (NPs) necessitates investigation of their impact on wastewater treatment processes, particularly anammox, a critical biological nitrogen removal pathway. This study explored the effects of short-term exposure to TiO, ZnO, and Ag-NPs on anammox activity in enriched cultures derived from River Nile sediments.
Materials And Methods: Anammox bacteria were identified and enriched, with activity confirmed through 16S rRNA and hydrazine oxidoreductase (hzo) gene amplification and sequencing.
J Hazard Mater
October 2024
Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, PR China.
Although the anaerobic reduction of azo dyes is ecofriendly, high ammonia consumption remains a significant challenge. This work enriched a mixed nitrogen-fixing bacteria consortium (NFBC) using n-FeO to promote the anaerobic reduction of methyl orange (MO) without exogenous nitrogen. The enriched NFBC was dominated by Klebsiella (80.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!