Standardized oil toxicity testing is important to ensure comparability of study results, and to generate information to support oil spill planning, response, and environmental assessments. Outcomes from toxicity tests are useful in the development, improvement and validation of effects models, and new or revised knowledge could be integrated into existing databases and related tools. To foster transparency, facilitate repeatability and maximize use and impact, outcomes from toxicity tests need to be clearly reported and communicated. This work is part of a series of reviews to support the modernization of the "Chemical Response to Oil Spills: Ecological Effects Research Forum" protocols focusing on technological advances and best toxicity testing practices. Thus, the primary motivation of the present work is to provide guidance and encourage detailed documentation of aquatic toxicity studies. Specific recommendations are provided regarding key reporting elements (i.e., experimental design, test substance and properties, test species and response endpoints, media preparation, exposure conditions, chemical characterization, reporting metric corresponding to the response endpoint, data quality standards, and statistical methods, and raw data), which along with a proposed checklist can be used to assess the completeness of reporting elements or to guide study conduct. When preparing journal publications, authors are encouraged to take advantage of the Supplementary Material section to enhance dissemination and access to key data and information that can be used by multiple end-users, including decision-makers, scientific support staff and modelers. Improving reporting, science communication, and access to critical information enable users to assess the reliability and relevance of study outcomes and increase incorporation of results gleaned from toxicity testing into tools and applications that support oil spill response decisions. Furthermore, improved reporting could be beneficial for audiences outside the oil spill response community, including peer reviewers, journal editors, aquatic toxicologists, researchers in other disciplines, and the public.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2022.106391DOI Listing

Publication Analysis

Top Keywords

oil spill
16
toxicity testing
12
improving reporting
8
aquatic toxicity
8
toxicity studies
8
spill planning
8
planning response
8
response environmental
8
support oil
8
outcomes toxicity
8

Similar Publications

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.

View Article and Find Full Text PDF

This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.

View Article and Find Full Text PDF

This study focused on fabricating a cellulose aerogel for oil spill clean-up, using common reed () as the cellulose source. The process involved isolating cellulose from reed via traditional Kraft pulping, considering the effects of key factors on the isolated cellulose content. After a two-stage HP bleaching sequence, the highest cellulose content achieved was 27.

View Article and Find Full Text PDF

Burning and flaring of oil and gas following the 2010 Deepwater Horizon (DWH) oil spill generated high airborne concentrations of fine particulate matter (PM). Neurological effects of PM have been previously reported, but this relationship has received limited attention in the context of oil spills. We evaluated associations between burning-related PM and prevalence of self-reported neurological symptoms during, and 1-3 years after, the DWH disaster cleanup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!